百科问答小站 logo
百科问答小站 font logo



如何证明下面的不等式? 第1页

  

user avatar   RealFiddie 网友的相关建议: 
      

只需证明两个命题:

命题1 若 在 内解析,且 是 的 阶零点, 且 则当 时有不等式

证明: 由于 且 在 解析,则由Taylor展式可得

令 则

且 在 解析. 对于 设 由最大模原理可得

令 可得




受前一题启发,我们可以直接证明这个命题.

命题2 设 在 解析, 且 分别是 内的 阶零点, 且 则在 内满足 其中

证明:考虑函数

则 在 内解析,对于 设 由最大模原理可得

令 可得 即




  

相关话题

  这个不等式缩放怎么证明? 
  这种不等式的本质是什么? 
  如何证明以下的复分析问题? 
  Cauchy定理的证明是否依赖于Jordan曲线定理? 
  如何证明下面的分析不等式? 
  这道复变函数的证明题怎么做? 
  复数范围内,一个数的整数次方是不是永远只有一个值?以及如何证明一个数的无理数次方对应无穷个值? 
  Γ(i)怎么算? 
  (动力系统 + 拓扑学 + 抽象代数)和(泛函分析 + 实变函数 + 复分析和解析几何)有哪些联系? 
  关于Stein《复分析》中一个定理证明的疑问,怎么推导出来的? 

前一个讨论
如何拥有像知乎大V赵泠那样的知识储备?
下一个讨论
是否存在仅由1和2组成的长度为2^n的序列,可以做到在这个序列中取出所有含1和2的长度为n的序列?





© 2025-04-02 - tinynew.org. All Rights Reserved.
© 2025-04-02 - tinynew.org. 保留所有权利