数学分析在讲一致收敛的时候,一定会遇到一个重要的定理:
若函数项级数每一项皆连续,且一致收敛,则和函数连续.
如果不用一致收敛这个基本的概念,那么我们对和函数的各种操作都无从谈起,毕竟数学分析研究的基本对象是连续函数. 另外这个定理的逆否命题是有力量的证明工具:和函数不连续,或者某一项不连续,或者不一致收敛. 所以一致收敛这个概念本身与连续性密切相关.
一致收敛从它的定义可以看出,自变量的选择与 n 趋向于无穷的过程中数列收敛无关,总可以被相同的 所控制,这体现了自变量 对和函数变化的温和性,所以得到和函数连续是比较直观的结论. 关于一致收敛保证了若干运算的交换性,就不废话其重要性了,其实都可以类比为连续函数的二重极限的可交换性.
另外一致收敛在数学分析阶段就体现出泛函分析的思想,
这体现了如何描述在无穷维函数空间 中使用确界范数描述其中元素的收敛性(收敛的函数列被视为 Cauchy 点列),而后在实变函数、泛函分析中我们会看到确界范数的重要性,他对连续函数空间的刻画是本质的. 如果换成其他范数,比如 范数,那么此范数对于函数在一点的取值没有依赖性,而只取决于这一点附近的平均性态. 详情请看 Stein 的实分析.
一些浅薄的看法,请大家多多指教.