我来稍稍科普一下数学的分支吧,虽然自己也是半桶水……捂脸逃(
数学有三个大分支:分析,代数,几何。
高中学的那些「代数」严格来说其实属于分析。代数事实上是研究运算与关系的十分抽象的学问。事实上,数学最底层的结构是代数,然后是分析,最高层的是几何,因为涉及「测度」(长度、面积、体积等)。
代数一般包括线性代数,还有群环域等等各种抽象对象的研究,基础是数理逻辑、集合论、数论之类的。数学家在「抽象」的道路上已经越走越远,从生活中不同的各种范畴(比如上面的分析,代数,几何)抽象出「范畴论」,定义了范畴之间的关系「函子」,然后又定义「范畴的范畴」……(没学过,只是了解)
分析的核心其实是「不等式」,各种概念都是在不等式上面生发出来的。对分析下定义很难,不过一般而言就是对序列,函数这类稍微具体的对象进行研究。最基本的是数学分析,后面还跟着一堆实分析,复分析,泛函,包括微分方程(其实这是单独的学科),balabala……
几何研究测度,是「最难」的东西。(然而前面的也很难)在大学首先是解析几何(包括射影几何),然后是拓扑,微分几何,Riemann几何等等。还有交叉的算术(数论)几何,代数几何,组合几何等等。这些几何都需要大量的代数与分析的工具(高层要用低层的工具很正常),早就与古典几何分道扬镳了。至于古典几何学,虽然很有趣,但是大学多半是不会教的,因为早已经不是科研的主流。不过我也不了解,不排除少数大学数学系会讲,课本大概率是约翰逊的《近代欧氏几何学》。有兴趣的话可以买来看看,课余时间研究研究也蛮有趣的。
不过鉴于题主是文科生,以上大部分数学都不会被题主学到。这里是为了告诉题主,数学的坑有多么深邃。