百科问答小站 logo
百科问答小站 font logo



数学分析中的两个反例是否有更深的背景? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

考虑这个函数的解析域。

设算子

解析当且仅当[1]

但是当 时,上面的运算失去意义,故 在零点不解析,事实上零点是它的孤立本性奇点。这是因为

Picard 大定理,它在 的任意领域内可取得 的任意值,最多只有一个例外。而泰勒公式只有在某点邻域内“稳定”才能对其利用多项式进行良好的逼近,而面对本性奇点这种怪物,只能束手无策。所以 在零点趋于任何值都不用大惊小怪,可怜的孩子被玩坏了……

同理。

上图是 的模曲面,其中红轴是实轴,绿轴是虚轴。显然沿这两个方向接近原点,极限不同。

参考

  1. ^ 龚昇《简明复分析》1.3



  

相关话题

  有哪些经典的反直觉数学结论? 
  数学中对于直线、平面的定义是什么? 
  请问大家怎么看待北大数院(中心)赵强博士(已毕业)的学术水平,但他为何放弃数学研究了? 
  数学系的教学模式是否违反直觉? 
  如何看待全民代数几何的现象? 
  7 x 8 + 14 x 18 + 42 × 13 的简便运算方法? 
  除了 3,4,5 以外是否还有别的三角形,它的三条边是连续自然数,它的面积也是自然数? 
  为什么要用文字定义多项式,而不是直接将多项式函数定义为多项式? 
  当游戏设计师需要具备哪些基本素养? 
  条件收敛级数重排问题,为什么这种想法很荒唐? 

前一个讨论
如图题,如何不用“强拆”的方式证明?
下一个讨论
已知一个圆,一个点和一条直线,如何找到一个与圆相切过点且圆心在直线上的圆?





© 2025-03-31 - tinynew.org. All Rights Reserved.
© 2025-03-31 - tinynew.org. 保留所有权利