百科问答小站 logo
百科问答小站 font logo



哈密尔顿-凯莱定理的本质是什么? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

主理想整环上的有限生成模基本定理。


user avatar   hu-yue-34 网友的相关建议: 
      

其实,很多教材上证明哈密尔顿-凯莱定理都用到了一个引理,即在复数域下,每个方阵都可以上三角化。或者用线性变换的语言,对任意 ,可以找到子空间链

,使得 且 是 的不变子空间。

这是我认为的哈密尔顿-凯莱定理的本质。

一旦有上面的引理,则商空间 是 的一维不变空间,所以 ,

即 ,其中 是恒同变换。所以有 。


user avatar   yiran-cheng-57 网友的相关建议: 
      

看你自己的回答我觉得你还挺懂事的嘛……

你身边的人也是一样啊,难道这个人不应该是学习的动力而不是放弃学习的借口么?

你是不是没有注意到身边的人在伤害你么?

嗯,我看你挺懂的嘛……




  

相关话题

  10/89 小数部分前 5 位可以构成斐波那契数列,这是一种巧合吗? 
  「只要整数的各个位数之和是 3 的倍数,那么这个整数就一定是 3 的倍数」是如何证明的? 
  世界上大约有多少人可以完全看懂并理解怀尔斯对于费马大定理的证明? 
  由 x²+x+1=0 得到 3=0 错在何处? 
  在其他宇宙,1+1 可能 = 3 么? 
  如何评价陈天权《数学分析讲义》? 
  为什么说尾数为1、3、7、9的素数个数是基本相同的? 
  为什么中国人数理化学科成绩似乎秒杀外国人,但世界相关的(出名的)顶级的科学家几乎全是外国的? 
  证明n维线性空间中任何n+1个向量都线性相关。? 
  有哪些有趣的数学史? 

前一个讨论
如何正确理解小概率事件,以及概率和哲学的关系?
下一个讨论
为什么 lnx 求导是 1/x?





© 2025-02-06 - tinynew.org. All Rights Reserved.
© 2025-02-06 - tinynew.org. 保留所有权利