百科问答小站 logo
百科问答小站 font logo



无限群是否一定含无限阶元?无限群是否一定有无限多个子群? 第1页

  

user avatar   chen-ze-kun-1-52 网友的相关建议: 
      

说说第一个问题吧

在可数交换群的情况,这种群的分类是经典的,下面都假设群是交换群

Def 1 我们称群是周期的,如果每个元素都有有限阶数

设 是一个素数,一个群 的 子群是它所有阶数是 这种形式的元素构成的子群,可以知道对于交换群的情况,它们确实构成一个子群

Thm 1 周期的群是它所有 子群的直和

嘿,这个就爽歪歪了,我们只用研究周期的 群长啥样就好

下面这个定理给出了交换群的一个(并不典范的)直和分解

Def 2 我们称一个群 是可除的,如果

(可除群是Abel群范畴里的内射对象,这可能就是Tor函子怎么来的吧hhh不过这儿扯远了~)

一个群的任何两个可除的子群之和都还是可除的,所以存在最大的可除子群,我们就直接叫它可除子群好了……记作

那么特别不可除的群,即 的群,我们也给个名字,叫作即约群好了。

Thm 2 一个交换群是它的可除子群和一个即约的子群的直和,即

定理1的证明很简单,不过定理2的证明需要Zorn引理,或者,等价的,选择公理。所以你可以选择不相信它,不过why not

Def 3 我们给出一个特别的群,定义 是 的 子群,它其实就是 的所有分母是 的这种数

Thm 3 可除的 群是一些 的直和

定理3的证明不是很困难。下面我们把重点转向即约的群,这种群的分类会难一些

Thm 4 (Prufer)一个可数的即约 群,那么它是一些 的直和

提一嘴,这个定理里的可数条件是无法去掉的w

到此基本上解决这件事情的分类问题了(趴)

Thm 5 一个可数的周期群 可以写成一些形如 (其中 是一个素数, 可以取 )的群与一些 的直和

啊,收工,睡觉!




  

相关话题

  从正整数 1~N 中任意取两数 m、n,设 P 为 m/n 可约分的概率,问 N→∞ 时,P为多少? 
  为什么人人都说数学有用/很重要, 但似乎大多数人(非数学专业)并不会去证明他们用到的数学? 
  为什么化学上喜欢用 lg,而数学上喜欢用 ln? 
  做数学做得狂躁了,我该怎么平静下来? 
  计算根号下1+根号下1+根号下1......等于多少? 
  如何用数论证明 3^x+4^x=5^x 只有一个实数解? 
  数学系的学生有哪些口头禅? 
  为什么尺规不能三等分一个任意角? 
  一个骰子,等概率的能掷出1-5。那么现在有两颗骰子。怎么样才能利用这两颗骰子等概率的得到1-25? 
  网上常能见到的一段 JS 随机数生成算法如下,为什么用 9301, 49297, 233280 这三个数字做基数? 

前一个讨论
以前是铂金比黄金贵上百美元的,现在比黄金便宜不少,不知何故?
下一个讨论
唐珑珂有多厉害?





© 2025-05-06 - tinynew.org. All Rights Reserved.
© 2025-05-06 - tinynew.org. 保留所有权利