百科问答小站 logo
百科问答小站 font logo



数学界有哪些通俗易懂的 open problem? 第1页

  

user avatar   RealFiddie 网友的相关建议: 
      

提两个有意思的open problem:


猜想(Erdős-Turán) 设 是正整数序列, 发散, 则 包含任意长度的等差子数列.

这个定理把“任意长度”改为“长度为3”也很难解决. 但是如果把正整数序列改为素数序列,有

定理(Green-Tao, 2004) 任给 , 可以找到 个素数成等差数列.

记 为素数序列 ,

猜想(Z.W.Sun, 2014-1-29) 对任意正整数 存在素数 使得 与 都是素数.

这个猜想目前写程序验证到 都是成立的.

注:这个猜想可以推出哥德巴赫猜想与孪生素数猜想. 推出哥德巴赫猜想是显然的,下面证明它可以推出孪生素数猜想:

(反证) 如果所有满足 是素数的素数 都比某个偶数 小, 则对任意这类素数 , 都是合数, 这是因为

然而 的因子只有1与 ,所以它是素数,矛盾.




  

相关话题

  两个星期自学完高中数学实际吗? 
  如何求出图中数列的通项公式? 
  如何解决这个数学问题? 
  如何练就看到一道数学题,不管多难都有思路,并且能在短时间的思考后迅速把它解出来的能力? 
  ∑ (1/n) 为何不收敛? 
  2020 年高考数学最后一道大题难吗?你能想出哪些「出其不意」的解法? 
  陈景润是如何证明「1+2」的? 
  100 万和 50% 的机会拿到 1 亿,你会选哪个? 
  现在的人工智能是否走上了数学的极端? 
  有没有一个函数求导后幂会变高? 

前一个讨论
使用HelloTalk是怎样一种体验?
下一个讨论
如何评价李宁给自己叠buff,代言人肖战+华晨宇+杨笠?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利