这是一个很严肃正经的数学问题。
我这里给出严格数学意义上的归纳。你看完之后,会发现其实四维空间没有你想象中的复杂,要理解4维的球形并不是不可能。本文尽量不用公式和术语,方便大家理解。尽管这篇文章不需要任何专业知识也能看懂,但是运气不好的话读上几个小时也是不出人意料的。
你看不到不代表它不存在,更不代表我们想象不到;18世纪被提出时就被认为无稽之谈的四维几何在爱因斯坦提出相对论之后,越来越有实际应用价值。
在这里并没有引入除公设公理之外任何的假设,整个数学大厦的构建依靠的基础就是如此简单,高维空间也不例外。如果你能够在一张二维纸上具象三维物体,我就能引导你在一本三维“书”上具象四维。
某维空间的球(Hypersphere)可以看成该维度空间内所有到某一固定点小于等于相同距离的点的集合。
空间内的封闭可以是不规则图形,如果用最简单的圆形封闭,本句可作为该问题的答案,但要如何理解呢?四维空间里,就算是最简单的图形,解释起来也要花点功夫。
开始前,首先要明确四维空间的定义。
说到“四维空间”时,经常会误指相对论中提及的四维时空(三维空间加上时间维度)概念。这种普遍性的误解,是由于相对论的相关科普流行有关。所以在理解这两个概念时,一定要格外小心。详见四维空间为什么不是三维空间加上时间?
Part 1:关于四维球
为方便记述,记一点为原点,建立欧氏几何直角坐标系(其实建立球坐标系描述要简单得多,但为更多人所理解,此处用大家熟悉的欧几里得空间建系)。封闭距离设为1。在n维空间就有n个任意两两都垂直的坐标轴。
如果我们将这个球绕着中心的面在四维空间旋转一周会得到什么呢?
看起来这三段话都是废话,但是这些都是作为理解四维球的铺垫,为了方便理解概括这些规律与对应关系。
那么正文
请看下图,点P在三维坐标系的位置,屏幕里画着的实际上不是立方体,而是一个立方体在二维平面的投影(projection)。但这时候你的想象力已经把这个图形勾勒成一个立方体了,相信所有生活在三维空间的我们都可以做到这一点。现在请把你的手指垂直立在下图原点,你的手指与屏幕垂直,也与该三维膜垂直。
在四维空间,为了找出在四维空间内所有到原点相同距离的集合,我们要建立一个方程来确定这些点的集合,这个方程为x²+y²+z²+w²=1。推理方式和三维球体相同,可以轻易理解此方程的可以直接跳过下面的推理。
因为三维空间在第四维(你手指的方向)没有厚度,我们把它看成在屏幕上,所以我们也把它叫做三维膜。
假设新维度的坐标轴为w轴。假设将上图点P向w轴方向平移w,记为P' ,则其位置为 (x,y,z,w)。P' 离XYZ空间的距离为w,现在我们得到一个三角形,直角边之一为PP'(长度w),另一个直角边为OP,斜边为半径OP'。此时斜边长即为P'到原点的距离,设为四维球半径,设该半径为1。
通过勾股定理可以得到 OP²+w²=1²
我们又知道 OP²=x²+y²+z²
所以 x²+y²+z²+w²=1
以上
注意w轴在这里并不特殊,因为任意两个坐标轴都是相互垂直的。我们也可以把x轴或者y,z轴单独提取出来,得到相同的结论,因为不管从哪个轴的方向看,欧几里得四维空间的坐标轴结构都是相同的,所以以上公式也是如此,式中的xyzw可以随意替换。
通过这个方程我们得到一个庞大的集合,也就是一个四维球体(4-sphere),更高维球体也是如此推理得到。
可能有些同学会问,就算你这么说,就算我能在代数上理解这些点的集合。我还是想象不出来高维球到底是什么样子啊。
1.2 找到w轴的方向
又是一个新的问题了。各位请打开你们的脑洞,最好换张显卡,我们没有关于四维空间的任何实际经验,这很可能是我们一生中最难想象的东西。建议你在想象四维球之前先想象超立方体:人类如何感受四维空间? - 视限的回答
你正在寻找一个方向,一个在此之前你从未知道的方向。
相信大家感觉最困难的是 如何想象出一条坐标轴与现有三维空间的三个维度相垂直。 这也是第一步。因为在我们想象的时候,总是有意无意地把这条第四维坐标轴放进了我们的三维空间里面,我在刚学的时候也是这样,这是个很容易或者必定会走入的误区(就像小学生刚学立体几何,试图把z轴放进XY空间内),然后建出个斜角坐标系。
我先列举几条关于这条坐标轴的几何属性,避免大家把这条直线禁锢在自己熟悉的三维空间内。
1: w坐标轴与原有xyz空间仅有一个交点
2: w坐标轴垂直于xyz空间(一条线垂直于一个空间是指,这条线垂直于这个空间里的每条线,每个面)
3: w坐标轴可与xy平面构成一个三维空间,一个垂直于z轴的空间。
4: 经过任意一点,必定可找到4条相互垂直的直线,这四条直线必定可经过xyzw轴旋转平移得到。
5: wxyz 可以任意互换,以上4条描述依然成立
当w=1,函数解为x=y=z=0,就是说这个四维球体在w=1的三维膜上只有一个点(0,0,0,1)
当w稍小于1时,xyz的函数解开始形成一个三维球。
…
当w=1/√2,函数解为x²+y²+z²=1/2,即一个半径为1/√2的三维球体,在十六个象限中的第一象限的其中一个点可以表示为(1/√8,1√8,1/2,1/√2)
…
当w=0,函数解为一个半径为1的三维球体
…
w为负时偶函数对称。
这个膜的意思指无厚度,而不是指三维空间里的一个平面切片。三维空间是四维空间的一个切片。一个三维物体只有长宽高,不管你在四维空间中如何摆放,总有一个方向,它是没有厚度的。
如果你把眼前的屏幕想象成一个三维膜(实际上是二维膜,所以需要靠你想象),那么以下方法可以帮助你想象w轴,但前提是你想象力必须大到可以同时在脑中印象大量的立方体。如果要想象四维球,必须同时印象大量的三维球;就好像你想象三维球的时候,你脑中印象大量的圆形。
四维空间很难想象,但是我们已经生活在了一个四维时空,我们想象三维空间+一维时间是没有问题的。我们也可以暂时先把时间当成w方向处理。把每个三维图像在w轴方向发生的变化从脑中过一遍。
然后再把时间当成x方向处理,想象图像在x轴的变化,描绘出每个yzw三维膜内的图像。
yzw三维膜是指,2维空间平面和1维时间组成的三维时空,因为也是三个维度,完全可以放在我们熟悉的三维空间内想象。举个例子比较好理解。比如一个苹果 ,xyz空间下是我们最熟悉的一个近似球体,而它在yzw空间里,是一片苹果切片跟随时间发展的变化,由长大成熟到腐烂,形状近似圆柱。如果这个苹果被吃了,那么每一口都相当于销去圆柱的一大块,形状看起来比较像迪拜塔。
如果对yzw三维膜想象有困难,可以具体观察下面这三个时空图:
注意这里是空间加时间,和4维空间有着本质区别。
时间取帧叠在三维空间的跑步:
三维空间加时间形成的四维球:
太阳系在四维时空中的运动轨迹 :(原图是在银河系中的运行轨迹,看起来很类似)
螺旋看起来是三维的,那是因为太阳系接近平面,可以看成是二维空间加时间形成的三维
1.3 构建你脑中的四维球
想象你有透明的200张纸,每张纸厚度是0.01,我们在每张纸上面画出不同大小的球体。
继续沿用之前四维球的方程x²+y²+z²+w²=1;将书的页码对应w轴,得到w关于页数p的线性方程 w=0.01p-1,继而再得到方程关于xyz的解。
在封面时,p=0,w=-1,x²+y²+z²=0,得到一个点;
第一页时,p=1,w=-0.99,x²+y²+z²=0.0199,得到一个很小的球;
往下翻能看到越来越大的球,第50页,w=0.5,x²+y²+z²=3/4,函数是一个半径√3/2的球;
第100页,w=0,x²+y²+z²=1,函数是位于赤道的半径为1的最大球,然后再逐渐缩小,总体的四维函数是一个关于w=0对称的偶函数。
就这样按页数对应的值画出不断变化大小的200个球在这些纸上。这时便在一本三维书上画出了一个四维球。
熟练之后请你把所有200个三维图像同时在脑中印象,你就能体会到四个互垂直的方向。
还记得之前说的经过任意一点必定有四条相互垂直的直线吗,没错,根据这本三维书的四条坐标轴。经过任意一点,你都能找到这四条直线的位置。你发现你打开一个新的世界,一个由无限个本身就是无限的三维空间构成的四维空间。
你要不断的琢磨并想明白每条线的垂直关系。
有一个可怕之处在于,完整的四维球由无限多个球体组成,而不是200个,但你要知道的是,想象无限只是让这一切变得平滑连贯。
当你脑中有一个三维球时,里面已经包含了无限的圆,而一个圆里也有无限条线和无限个的点,想象圆并不是什么难事,你的想象力早已超越无限,要做的,只是突破下一个无限。
于是映在你脑海中的,是一个四维球
你在脑海中,拥有了四维的视野,
如果没有理解,没有关系,这不是一时半会儿能搞定的。细想一个住在平面国的人,永远也接触不到第三维空间,你会怎么和他解释?试图用相同的办法说服自己。
我下面简要的画一个四维球,把这个球在所有坐标轴形成的平面上重叠的部分(也就是圆,四条轴交错形成6个面)也画出来。
为什么要这么做呢?
因为当我们简要的画一个三维球时,通常把这个球在坐标轴形成的平面上重叠的部分(也就是圆,三条轴交错形成3个面,用这个方法表示球很形象,因为在平行于这个圆的所有圆里面,这个圆是最大的)也画出来:
请把你的手指竖立在上面图的圆心上,这时你的手指与纸面上的三维空间相互垂直。
我们已经可以很好想象在在纸面上的三维球,这时垂直于这个纸面的新坐标轴就可以看成是第四维度。每张纸都是一个三维空间,每张纸里的三维空间都相互平行
w轴垂直与纸,你脑海中应该深刻印象出3个圆:xw面上的圆,yw面上的圆,zw面上的圆。
加上xyz的三个圆,于是我们便很容易地得到了我们想简要画的六个圆以及他们在球面上的平行圆。他的表面大概像这样:
此图只画出了5张纸上的球,因为画太多画面就看不清了。四维球拥有6个互相垂直的二维球(圆)和4个互相垂直的三维球。
一个四维球体是由连续的规律变化半径的无限个三维球的集合,当然,他们各自在相互平行的三维空间,也被称为:平行空间[注1]。
三维球的表面有经线与纬线,四维球也类似:一个四维球的表面可以看成是无数个纬“球”和经“球”构成,每个纬“球”互相平行,半径在南北极方向按公式±√(r²-x²)不断变化:在南极是一个点,在赤道到达最大半径,再缩小至北极。
这张图是四维球的表面,在四维空间没有内外之分。如果你在分清四个方向前以三维视角看此投影,很可能出现误区,觉得存在内外:
当你把不断变化的w替换成不断变化的x,结果亦是相同。
若仍觉的困难,想象一下一个三维球是怎么用不断变化半径的圆积分组成的。
注意要想象成功,无论如何,请做到这点:勿试图在三维空间内想象第四维方向(废话)。
想象篇完,以下解释理论
Part 2:为什么四维球可以封闭三维空间?
很高兴能不以降维比喻而用微分解释这件事情:
我们继续动用刚才画出的四维球,在 (1,0,0,0)处做一个点,通过这个点,有一个垂直于x轴的空间。接下来我们在每个x²+y²+z²+w²=1 成立的位置(即四维球的表面)作无数点,与球心连线,我们可以经过该点作无数个与连线垂直的空间。因为点是连续的,所以在球表的空间也是连续的。
我们也可以用拓补解释:
均匀内裹三维空间,使其与其空间外一点保持相等距离,每条测地线都围绕该点一周后闭合。
我们不难发现,在四维球的表面,存在一个有限但是无边界的三维空间。
有限是因为这个空间没有在四维空间上无限延伸;
无边界是因为这个空间均匀的散布在四维球表面,你找不到这个空间的任何断层或裂缝。
如果你是这个表面空间的一个三维生物,你永远都无法逃脱这个封闭,你会发现一个三角形的内角和永远大于180;即空间存在曲率,因为这个空间的曲率导致其永远与球心保持相同距离;,任何一条无限延伸的直线都能闭合;往空间的任意一个方向走都会回到原点。除非你能把你的腿沿着不属于你空间的位置弯曲,产生在半径方向的行动力。
那么有限无边界的空间该怎么理解呢?
或者说身处这样一个空间是什么体验?
如果这个空间很小,你可以很贴切的感受到。
你就是那个站在自己后面看自己的人;不管你看向那个方向都能看到自己的后脑勺;你可以追着自己的像前进,但是你永远也追不到,会看到你追的自己也在往前面跑;如果你的手够长可以往前伸够到自己的后背,或者够到前面第n个自己的后背。如果你是这个空间的一条贪吃蛇,你最后一定会撞上自己的身体。
注意你在各个方向上看到的无数的像不是自己的镜像,他不和你镜面对称,而是和自己一模一样的像。
你当然可以向前摸到自己的后背,找不到有这种图。为了让你们体会一下无边界,还是画一个给你们看吧~
2.2 克莱因瓶
三维封闭图形都必定存在内外之分,
而在四维空间中,并不成立
任何封闭的拓补平面,不管是你的篮球还是饮料瓶还是你住着的房间,都有内侧和外侧。一只苍蝇不可能从外面飞到内部而不穿过其边界。
但在四维空间中存在例外:
克莱因瓶(Klein bottle)[注2]无法在平坦三维空间中存在。他的内部和外部[注3]通过在四维空间的折叠连到了一起,没有内外之分。
而在三维空间内,瓶身不得不穿过自己的瓶壁。
三维空间的克莱因瓶是可以拿来盛放水的,也可以通过蜿蜒的瓶身把水倒出来。
当你初步理解四维空间后,我现在可以很简单的向你解释你之前想不通的疑惑,克莱因瓶到底神奇在哪里?
观察下图,假设这张图在zy平面,假设水面在xy平面开始流动(红)[注4],x轴垂直于屏幕,y轴平行于屏幕,水面之后可以绕着瓶子走回到自己原来的位置。水面首先沿着y方向前进,向右弯折,沿着x轴旋转180度回到-y方向(黄),然后“神奇”的穿过瓶壁,到达瓶子外部(绿),再沿着瓶壁走一圈重新回到瓶内(紫)。
很显然,最难理解的部分就是瓶口是如何不碰到自己而到达自己内部。而剩下的部分和三维空间内的表示完全一致。
我相信大家都能迅速理解下面这句话了:瓶口在将要碰到瓶壁时,向w轴方向弯曲[注5],再按原来方向继续前进,在一个平行于我们的另一个三维空间越过瓶壁,再向着w轴折回,回到原来瓶子所在的三维空间,这时候,瓶口就已经越过了瓶壁把自己的内侧和外侧相连。
如果有困难,请在刚才教给你的三维书上面作画便可。
这个图形画起来比四维球简单得多,仅需要几张纸足够。
要注意克莱因瓶并不是莫比乌斯带(Moebius strip)的升维版,虽然一个克莱因瓶可以用2个莫比乌斯带拼接而成。可能有很多人不解。稍微科普一下。
他长的就跟甜甜圈的表面一样。他是个分内外的曲面拓扑图形。
为什么被咬了一口呢,这就是普通甜甜圈与莫比乌斯甜甜圈的区别了,其实它仍然是个连通的圆环,但是部分被折叠进了四维。
在此处,甜甜圈被切断,沿着前进的一个方向的一个面[注6]在四维空间被旋转180°,然后再将两个断口连接。
当然,沿着面旋转在三维空间无法实现:
你从这个被重新连接的断口上去的时候。你的上下方向没变,左右方向没变,但是前后方向倒过来了,从此你变成了自己的镜像。你好像穿过了一枚镜子来到了里面的世界。
以上都是纯几何,那么四维空间有什么实际应用呢,宇宙学,广义相对论,弦理论,M理论都会用到,以下科普一下空间曲率。
Part 3:宇宙存在空间上的第四维吗
我们最经常用到的是用来解释空间的曲率,我们知道空间的曲率来自于物体的质量。
类似下面这样的图你一定看过很多遍了,这次我们用四维几何把他仔细研究一下。
首先是横纵交错的两分方向的线,这两个方向的线在我们空间内。
接着是一串的同心圆,这些也是曲率的等高线。对于同一条等高线,空间的曲率是相等的。
我们可以用以上数学公式算出来空间任意一处曲率的大小。这时候我们发现物体在空间中的运动可以很形象的解释。
下面的两幅动图很形象的解释上面第1-3条规律。
http://pic.92to.com/anv/201602/14/hngozsmcaw0.gif
http://pic.92to.com/anv/201602/14/nflueegcjyg.gif
看起来我们可以用其解释时空的在质量各种分布下的运动了,和四维没啥关系。
但是,如果在三维空间内看待这个问题[注7]。只能解释某个平面内物体的运动。
而我们空间的质量分布是三维的,物体运动的方向也是三维的。这时候我们再回来看这个问题,我们应该把弯曲放在哪个方向呢?
相信看懂这篇文章的你,已经找到了答案答案。这个方向区别于我们空间的三个方向,也区别于时间的方向。
3.2 我们现在所生活的宇宙,是不是就是一个四维的封闭?
我们目前还不知道,这要取决于宇宙的四维形状。
广义相对论认为我们的时空都被质量弯曲,是一个有曲率的时空,相对于牛顿的平直时空,如果要将空间的曲率在直角坐标系(Cartesian coordinate system)中画出,必须需要多一个方向的坐标轴。我们把这个弯曲的三维空间称为三维曲面;我们把这个三维曲面在四维空间的形状称为宇宙的形状(Shape of the universe)。
我们目前不知道宇宙在四维空间是否无限延伸。宇宙的形状是大体上空间的曲率决定的,曲率小但是范围广,不同于质量星体所造成的小范围大曲率。
测量空间曲率就是测量测底线的弯曲程度。找个一个由测底线连成的三角形,然后测量它们的内角和。
如果内角和大于180度,那宇宙是个三维球面;
如果内角和等于180度,那宇宙是个三维平面;
如果内角和小于180度,那宇宙是个三维双曲面;
只有第一种情况,宇宙可以有限无界。
另一条垂直于此屏幕的空间轴没有被画出来
根据我们目前的测量结果,看起来仍是平直的,但是物理学家仍未下结论。因为这个参照的三角形的大小要与四维球体具有可比性才能发现空间的不平坦(比如在地球上,至少要画出千米级以上的三角形,才能测量出内角和>180度)。很可能原因是我们所观测到的区域太小。当半径相对无限大时,四维球的表面可以看成平直空间。
3.3 如何在四维空间理解虫洞?
如果你能接受以上的理论,而且对曲率和曲率的极限奇点(请参考我对于奇点的解释:现实世界有哪些 Bug? - 视限的回答)也有充分认识。我可以在四维空间帮助你理解虫洞。
希望你在理解四维之后,更了解虫洞。
虫洞是因为质量,能量和暗物质带来的或宇宙自身的曲率弯曲形成的时空与自身连接的拓补结构。
虫洞并不是你在别的地方看到的示意图那样,虫洞的三维示意图不能直接按照他所展示的理解。
有很多类似这样的图片,来展示虫洞,这些图片的错误之处在于把飞行器放到了虫洞的中间。真实情况是,虫洞的“墙壁”就是我们生活的空间,图片没有画出其中一根我们的空间坐标轴,用之前加维的方法想象出少掉的坐标轴。画中虫洞的墙壁就是我们所在的三维空间。飞行器应该在这个墙壁中运动。
大家很可能有个误区,虽能明确知道虫洞是一个洞,但洞的结构在四维,你在下落过程中,你周围仍是无限延伸的空间,不可能看到任何三维形状的的洞。如果虫洞稳定,我们也可以在洞壁上停留,除了额外的曲率我们看不出和原来空间的区别。
因为不是这个洞属于我们的三维空间,而是我们三维空间的弯曲产生了这个洞。
刚才探讨过宇宙的形状,可以发现,一个Ω0=1的宇宙,虫洞很难连接这个宇宙的两个位置,空间需要弯折超过垂直。
虫洞更容易在一个Ω0不等于1的宇宙可以把两个空间的距离拉近。
虫洞的形状不一定规则,它可以是复杂的拓补学结构。
http:// zh.arslanbar.net/Files/ PictureBase/458/458_120_20110514172619_608845320.jpg
如果宇宙是个三维曲面,三维曲面有两个点曲率无限向垂直曲面弯曲(奇点),则这两点的空间有可能相连。但这个时候出现的虫洞,是两个黑洞。即使你能从一边进去,但不能从另一边出来,因为另一边的光锥向内,不允许你往外走。如果要让时空穿梭实现可行性,时空弯折不可以太剧烈,至少光锥不能偏向时空的一侧,需要将小部分的高曲率分摊到周围的空间。使物体至少在虫洞另一端可以离开。如果宇宙有类似这样的在连接自身的四维拓补结构,理论上时空穿梭是可行的。
注:
7. 四维物体在五维时空中运动。
知乎处女答,部分图片来自网络,说句题外话,自己当了一遍答主才理解各知乎答主的不容易,要把自己知道的知识解释恰当给所有人听并非易事。本人以后看到好答案后会更倾向于给答主点赞,因为这是不但是给每个答主的小小鼓励,让他们就更加有动力去答题,也是个让普通知乎用户受益的反馈机制(后来发现有些被自己点赞的人也会过来看看你,也算是种互动吧)。我们不是也期望去看到更多好答案吗。有建议和问题欢迎提出,我感谢你们的每个意见,不论好坏,都可以帮助我改进答案,提升各位的体验,这是大家都希望的。我也很希望在知乎这个不错的平台与大家作学术讨论。
Why hesitate to make Dost Thou Know a better place?
图片素材两张自制,其余来自网络。
转载请联系。来自某三维生物的脑洞 / 2016 Apr. 3
后记
请注意想象四维球是有门槛的,如果你不理解四维空间,应该去想想四维空间最基础的形状。
人类如何感受四维空间? - 视限的回答或许能解答你对于的疑问。
区别是四维球上每个三维球边界的连线也是一个三维球,而这里得到的是直线
这是一个“在三维空间呆多了“的人很容易进入的一个误区
试图在三维空间中想象四维空间,这是不可能的,包括任何人包括我。
能想象的只能是四维在三维的切片或投影。
想象四维空间首先要找出第四维的方向,否则想多久都没有用。
然而第四维空间的方向又必须要在第四维空间中想象,就这样进入循环。
要走出这个循环,需要在脑中拓展出一个新的坐标轴。这也是为什么我一直说要把三维空间看成三维膜的原因。因为任何一个三维物体都没有在w轴的厚度。这厚度不在我们的三维空间,w坐标轴穿过我们的三维空间,而且与我们的空间只有一个交点。
好老的问题……预感会被腾腾再次顶火。
1.四维封闭就是四维球,难以直观画出,就像二维生物(如果有的话)直观展现不了三维。但是可以代数展现为:{(x,y,z,w)|ρ²≤R²},其中ρ²表示到圆心的距离平方,为:ρ²=Δx²+Δy²+Δz²+Δw²。
tip:注意ρ的定义必须满足一个条件,改变参考系(类比二维或者三维,也就是图形实物不变,重新画坐标系统),不会改变这个值。满足真实世界的规律——两点间的距离和观察者无关。
2.宇宙不是四维封闭空间,因为时间这个维度和空间很不一样。因为在定义两点(x1,y1,z1,t1)、(x2,y2,z2,t2)距离的时候,我们发现,由于相对论效应(尺缩钟慢),Δx²+Δy²+Δz²+Δt²不是不变的,而是会依赖于观察者的速度,所以这不适合于定义实际中的四维距离。
3.我们发现,现实中不变的量是:ρ²=Δx²+Δy²+Δz²+(icΔt)²,(c为光速,i为虚数单位)尺缩和钟慢效应相互抵消,这就是四维空间中的距离定义。按照之前的说法,与某点距离相同的点组成的是类似双曲面的东西,没有围出封闭空间。
4.如果强行定义时间和空间一样性质。问宇宙的历程是不是和其上四维球一样的先从点开始快速膨胀然后速度放慢开始收缩再回到点。我可以回答一个观测结果:目前宇宙的膨胀速度是在逐渐加快的。
说老实话,一开始没明白题主的意思。
首先,我觉得“二维空间的完美封闭叫圆,三维空间的封闭是球”这句话的意思含糊不清,因为楼主没指明究竟是“圆”还是“圆盘”,“球面”还是“球体(实心球)”。这两类在数学上是不同类的东西,一般来说,
圆指的是,
圆盘指的是
同理可知
球面:
球体:
依次类推,你可以很自然的得到和的定义。
其次,什么是完美封闭?在数学上,我们可以用闭曲线或闭曲面等概念来描述某些几何对象。我猜想,楼主的本意是想描述“二维空间中的单连通闭(一维)曲线都同胚于圆”,或者“三维空间中的单连通闭(二维)曲面都同胚于球面”,为什么我会这样猜想,因为这个就是著名的庞加莱猜想在二维和三维中的表述。
所以楼主问题的答案应该是“四维空间中的单连通闭(三维)曲面都同胚于”。
=========================================================
下面回答题主的第二个问题 “我们现在所生活的宇宙,是不是就是一个四维的(完美)封闭?” ——此处我对题主的问题做了一点小修改。
答案是“目前不清楚”!
可以肯定的是,我们生活的宇宙,不是牛顿或绝大部分人所想象的平直三维空间,这个已经被相对论证明了:)
那是不是高于三维的空间呢?弦论说是十一维空间,不过这只是理论上的,尚未得到证明!
所以以下讨论建立在三维基础之上(不要跟我谈时间轴,那个东西不在我的讨论范围中):
一。首先先回顾一下人类所在的地球。为了便于讨论,我们假设地球是空的,这样它就可以看作是一个球面,对于我们的祖先而言,他们以为生活的世界是平直的二维世界,现在我们知道,因为地球太大,所以球面的曲率小到几乎可以近似于平面的曲率0。这里介绍一个“新”东西(其实就是甜甜圈或自行车胎):
二维环面:,你可以想象这里的“乘法”就是拿着一个圆绕着另一个圆转360度。
现在假设我们的祖先生活在一个充分大的环面,大到它上面的测地曲率也同样近似于0(这里你可以阅读经典科幻《环形世界》或观看去年的电影《Elysium》获得直观认识,但要注意我们这里假设的环面的大小是和地球同一级别的,并且我们的祖先无法离开所居住的地面),在这种情况下,我们的祖先是无法用朴素的知识确定自己究竟是生活在二维环面还是二维球面上。(可以用某些数学知识,但我们的祖先并没有掌握它们)
注意到也是一个闭(二维)曲面,我们可以得到如下结论:
如果不离开地球或借助其它工具,我们的祖先无法判断自己究竟是生活在还是这样的闭(二维)曲面上。
二。现在来看看我们所居住的宇宙,大家已经可以猜到,我们现在要面临的问题肯定会涉及到和,因此最简单的回答就是:如果不离开宇宙或借助其它工具,我们无法判断自己究竟是生活在还是这样的闭(三维)曲面上。
注1:我在上一个问题中提到的数学概念“单连通”可以解决二维的问题,同样也可以解决三维的问题。但这里没法展开去讲,大家可以搜索一般的《拓扑学》教程,或科普书《庞加莱猜想》;
注2:二维的闭曲面除了和之外,还有很多,这里涉及到的是二维闭曲面(流形)的分类定理,大家可以学习《低维拓扑》获得相应的知识。三维情况很复杂(庞加莱猜想的最终难点就在于三维),但同样有很多备选的三维闭曲面哦。
注3:对于强迫症和完美主义的我来说,毕竟还是希望宇宙是(其实是啦)这样的结构上的,别搞的太复杂哦,哈哈!
首先定义什么是维。
庞加莱首先(在1912年)注意到应该给予维的概念以更深刻的分析和明确的定义。庞加莱观察到直线是一维的,因为我们可以通过剪开它的一个点(这是零维的),使它上面的任意两点分开;而平面是二维的,因为要分开平面上的一对点,必须切开整条(一维的)闭曲线,这暗示了维数的归纳性质:一个空间,如果通过去掉一个(n-1)维的子集的办法能把它的任意两点分开;而去掉较低维的子集时,不一定能做到这一点,就称这空间时n维的。(摘自《什么是数学》256页)
任何有限点集都有这样的性质,它的每一个点都能被包围在任意小的空间区域内,且使这区域的边界上不包含该集合的点,为方便起见,我们说不包括任何点的空集是-1维的。一个点集S,如果它不是-1维的(即S至少包含一个点),且S的每一个点都能被任意小的区域所包围,而这个区域的边界和S的交集是-1维集(即边界不包含S的点),则称它是0维的。用同样的方式,进而能依次定义2,3,4,5,...维的概念,每一个都依赖于前一个定义。因此,一个集S是n维的,这是指,如果它不是任何更低维的,且S的每一个点都能被围在任意小的区域内,而这个区域的边界和S的交是 一个(n-1)维的集。普通空间中不存在维数大于三的点集,因为空间中的每个点都能作为任意小的球的中心,而球的表面是二维的。但是在现代数学中,“空间”一词是用来表示定义了“距离”和“邻域”概念的任意一组对象,而这些抽象“空间”的维数可以大于三,一个简单的例子是n维笛卡尔空间。(摘自《什么是数学》257页)
题主所说的四维空间指的应该是四维欧几里得空间,即过空间中一点能做四条相互垂直的直线,这样的空间是想象不出来的,感兴趣的兄弟可以在知乎搜一下“为什么人类想象不出四维空间”,一定能找到很多有趣的知识,但是为了满足我们智商上的优越性,兄弟们可以想象一下交叉帽,我们知道莫比乌斯带只有一个面和一个边界,那么把莫比乌斯带的边界拉成一个圆即得到交叉帽。
曾经我也很纠结这个问题,但是经过很多思考,我还是认为人类是想象不出四维欧几里得空间的,就好像二维的圆想象三维球也只能认为它是一个实心圆,可是实心圆和球面是完全不一样的,那么和四维超球在三维空间的投影是一个实心球一样,四维超球和实心球的差别也应该很大,相信很多兄弟有超立方体的概念,我们能搜到超立方体在二维平面的投影图,那么超立方体我认为也是想象不出来的,因为超立方体有32条同样长的边,就和立方体有12条同样长的边一样,我要反对所有说自己能想象出四维超球的兄弟,想象是主观的,没法证明和证伪。
最后多读书,多学习,建立终身学习的价值观。题主如果想更深入的了解宇宙,不妨先学习相对论,推荐《时间的形状》。
可以看看下面这部纪录片,里面有关于纤维丛(fibration)的一些内容:
这两个游戏都有自己的问题。但严重程度完全不一样。
赛博朋克最大的问题是人力不够,没有人手把愿景在限期内做出来,导致后期狂砍。但从已有的成品来看,CDPR是完全有人才有能力把东西做出来的,只不过没时间做。光影效果,已有的垂直城市设计,以及主线和很多支线任务的演出都有毫不输巫师3的气质,尤其是日本城浮空平台那关,无论是游戏流程还是画面还是音乐,都把类似银翼杀手2047的那种气氛和感受做到了极致。有人说CDPR的人才都跑了,或者CDPR傲娇了开始放水,这并不客观。2077确实是个半成品,主机优化的问题尤其严重,但你关注已经完成的部分,用高配置PC玩,其质量并未令人失望,依然是巫师3的水准。
2077就像是一个优等生忘了做背后的几题的考卷,开天窗导致不及格,但已经做了的题目还是正确率极高的。
谈到E3的demo,单从画面上讲你很难说它缩水了。只不过CDPR没告诉你想要E3画面,就得上3080+光线追踪。。。
我猜想没有光追的话,游戏在大多数情况下也是可以达到光追的效果的,只不过人工工作量会很大,有些地方需要离线烘培,而有些地方需要人工设置虚拟光源。CDPR可能发现项目后期工作量太大搂不住了,就上了光追这个大杀器。。。
至于无人深空,现在口碑很好,但我要不客气地讲,这个游戏到了今天依然是垃圾,只配卖$19.95,打折的时候卖2.95的那种。
Hello工作室自始自终都没有把初始愿景实现的技术能力。
你可以看无人深空进入大气层的技术实现。先是一段飞船进入大气层摩擦发红的特效,然后可以看见地形通过一种非常粗糙、视距很近的情况下刷新出来,并且刷出来的地貌和太空中看到的地貌完全不同。所以从头到尾,hello工作室都没有类似精英危险和星际公民的无缝行星登陆技术。
无人深空更新了十几次,并没有触动这个游戏除了机械刷就没有任何深度的本质。这是一个极其无聊的游戏。但它刷了两年的DLC,玩家也就给他点面子,没功劳有苦劳。它每次更新我都会进游戏看看,但玩不了半小时就会放弃。一是实在无聊,二是它美术设计和渲染水平有限,色彩及其刺眼。比如在母船机库里,到处都是亮瞎狗眼的点状光源,但这些光源不会照亮周围的任何东西,看的时间长了有种不带护目镜看焊接的流泪效果。你说更新了那么久,这么简单的问题都不解决,有什么用呢。游戏中随处可见低级设计的痕迹,比如说有很多行星上有一种可以卖钱的球,这种球没有任何贴图,只有亮瞎眼的纯白色材质,在HDR效果下极其刺眼,但它又不是个光源,放在地上不会照亮周围任何东西。这种打开Blender就存盘的建模初手垃圾素材居然也能放在游戏里,真是活久见。
所以无人深空就像是一个学渣冒充学霸,把期望提得无限高,却每题都答错结果接近0分,被骂,然后花了漫长的时间在那里订正,一题一题的改,最后终于接近30分了,然后获得了大家的赞赏,全然忘记了它改了那么久依然是不及格。
无人深空的贴图我就不贴了,首发的时候真是纯垃圾,基本上是2008年魔兽世界首发的那个水准。现在也依然是垃圾,开个HDR看着眼睛都疼。