我用通俗的方法解释一下吧
分形图形的基本特征是具有标度不变性。
即在使用不同的尺度下观测分形图形时所得到的结果是具有相似性的,分形图形具有尺度上的对称性。
这种特性表明,不同的尺度(大小)的同一种分形图形之间具有某个共同的几何参数,即这一参数是一个与尺度大小无关的不变量,这个量就是分形集合中的分数维。
但是通常几何体的维度一般是整数维度,比如一条直线的维度是1,一个平面的维度是2,一个立方体的维度是3。这种维度的定义可以这样理解:在平面中有一个边长为a的正方形,那么它的面积是a^2,如果将其边长放大b倍,则新的正方形面积为(ab)^2,即在边长放大b倍之后面积变为了b^2倍,占据原先图形b^2的面积;同样的如果是在空间中有一个边长为a的立方体,其边长放大b倍后得到的新立方体,体积为原来的b^3倍,占据相当于b^3个原先的立方体叠放在一起的空间。
照这样的理解,如果在D维空间中有一个几何体,把其每个方向的长度都放大b倍后,得到的新几何体的“体积”放大的倍数为:
对上式稍作一下变换即可得到:
于是我们得到了一个“维度”的定义。
那么对于分形图形,具体举个例子吧:
康托尔集合:
取一条线段,三等分后去掉中间一段,可以的到余下的两段;再对于这两段,同样地去掉中间的1/3,每一段又能余下两段,就成了一个四条线段组成的图形,如此循环下去,无穷多次以后,最终能得到一个只由点组成的集合(到最后分得只剩下点了*^__^*)。
对于这样的一个集合,若取如图所示长度内的这样一个点集的图形,将它放大3倍以后,只能得到相当于两个原来的图形大小的新图形,那么这个分形的维度就是:
其它分形图形的维度也可由类似的方法得到。
参考书目:《力学与理论力学》秦敢 向守平 编著