这个结论被称为厄多斯-安宁定理(Erdos-Anning Theorem), 由 Paul Erdos 和 Norman H. Anning 两人联名发表于1945年。
考虑利用反证法。设若点集 中的诸点并非全共线,于其中必可求得不共线的三点 又因点集 无限,必可于其中再取一点
记 现在考察 需要注意:由于 可能与 或者 共线,这里声称的三角形可能是退化的。但是,无论如何,依三角不等式必能成立 以及 于是 至多仅有 等总计种可能的取值。从几何上说,这里每取一个值, 就对应地位于某一条双曲线上,当然在某些取值下这所谓的双曲线也会是退化的。
很清楚, 将是以 为焦点的那簇双曲线和以 为焦点的另一簇双曲线的公共点。因为 不共线,这些双曲线必不能重合(至少实轴已不相同),而任何两条不同的双曲线至多有 个交点,因此满足条件的 至多有 个,但这直接违反了关于无限点集的设定。
最后指出,当将「整数距离」的条件替换为「有理距离」时,结论不再成立,也就是说:
存在非共线的平面无限点集使得任意两点距离都是有理数。