百科问答小站 logo
百科问答小站 font logo



使用容斥原理的时候发现这个恒等式,如何证明? 第1页

  

user avatar   ni-ni-60-26 网友的相关建议: 
      

记​ 则有:​

法一:(讲故事法)

将t个不同的小球放进k个不同的盒子里,要求每个盒子至少放1个,求方法数

由于t<k,因此这是不可能做到的,所以方法数为0种

又由容斥原理知总方法数为:

因此 ​ 证毕!

法二:(求导)

我们熟知二项式定理: ​ 记该等式为​

对​两边同时求导得:​

再两边同时乘以​ 得:​ 记该等式为​

对​ 做同样的操作(两边求导后再乘x)得到 ​,以此类推,得到​

我们易知:​ (​ )右侧为​

又因为​ 左侧为​ 因此​ ​(​ )左侧含因式​

故我们在​ 中取 ​得到:​

证毕!

法三:(母函数)

我们熟知: ​

其中 ​表示 ​中 ​项的系数

则​ 时我们有:

证毕!

法四:(差分)(本题的本质)

注意到: ​ (因为 ​)

所以 证毕!




  

相关话题

  如何评价王萼芳的高等代数教材? 
  数学思维在生活中有多大用处? 
  有哪些有趣、脑洞大开的学术论文? 
  法国公立数学计算机毕业后怎么选择? 
  请业内人士聊聊韦东奕现在的科研状况,能不能获得菲尔兹奖? 
  请问这个极限怎么做呢? 
  《三宝大战诸葛亮》牛顿为什么会创立微积分,这是正确答案、还是在娱乐、还是在误导? 
  如何不使用傅立叶级数证明下面的命题? 
  哪些数学命题曾经长期被误认为是正确的,但之后被严格证明是错的? 
  这道复变函数的证明题怎么做? 

前一个讨论
Luxenius 是谁?
下一个讨论
为什么知乎上的A-SOUL粉丝普遍有逆向民族主义思想?





© 2025-04-18 - tinynew.org. All Rights Reserved.
© 2025-04-18 - tinynew.org. 保留所有权利