百科问答小站 logo
百科问答小站 font logo



使用容斥原理的时候发现这个恒等式,如何证明? 第1页

  

user avatar   ni-ni-60-26 网友的相关建议: 
      

记​ 则有:​

法一:(讲故事法)

将t个不同的小球放进k个不同的盒子里,要求每个盒子至少放1个,求方法数

由于t<k,因此这是不可能做到的,所以方法数为0种

又由容斥原理知总方法数为:

因此 ​ 证毕!

法二:(求导)

我们熟知二项式定理: ​ 记该等式为​

对​两边同时求导得:​

再两边同时乘以​ 得:​ 记该等式为​

对​ 做同样的操作(两边求导后再乘x)得到 ​,以此类推,得到​

我们易知:​ (​ )右侧为​

又因为​ 左侧为​ 因此​ ​(​ )左侧含因式​

故我们在​ 中取 ​得到:​

证毕!

法三:(母函数)

我们熟知: ​

其中 ​表示 ​中 ​项的系数

则​ 时我们有:

证毕!

法四:(差分)(本题的本质)

注意到: ​ (因为 ​)

所以 证毕!




  

相关话题

  如果在一个密闭空间里给一个普通人1亿年的时间,他可以推演出现在的数学定理吗? 
  这个级数怎么处理? 
  π的1997次方的小数点后1997位是多少? 
  有没有什么可以让自己对数学感兴趣的书? 
  1米*1米*1米*1米*1米等于什么? 
  如果一个人无意捡到了哥德巴赫猜想的证明,应该如何处理? 
  如何处理{nx_n}这个数列? 
  存在一点的极限值不等于该点的函数值吗? 
  不定积分∫dx/(2 + sinx)在x = π+2kπ处,为何会这样?这是不定积分的某种“特性”吗? 
  有哪些有趣的数学史? 

前一个讨论
Luxenius 是谁?
下一个讨论
为什么知乎上的A-SOUL粉丝普遍有逆向民族主义思想?





© 2024-11-24 - tinynew.org. All Rights Reserved.
© 2024-11-24 - tinynew.org. 保留所有权利