百科问答小站 logo
百科问答小站 font logo



复变函数如何进行映射? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

复变平面有三大变换:

  • 莫比乌斯变换
  • 多项式变换
  • 指数变换

其中莫比乌斯变换为

特别地,当 时,我们称之为关于单位圆的共轭反演

反演有很明晰的几何意义,我们展开谈谈。见下图


如图, 、 、

由射影定理可得

此时我们称 与 为关于 互为反演点。特别地,当 半径为单位长度时,显然 与 互为倒数,这不得不让我们联想到共轭反演变换,不过还需一点加工。

由欧拉公式

那么

看得出,复数 经过共轭反演后,模长变为其倒数,幅角变为其相反数。也就是说,我们在复平面 上若想找到 的共轭反演点,可以按照上述的几何方法找到其反演点 ,然后再取共轭即可。这就是我们将倒数变换命名为共轭反演的原因。

综上,一个莫比乌斯变换可以机械地分解为若干个简单的变换的复合,他们分别是:旋转、伸缩、平移、共轭反演。这从表达式中可以清楚地看出,

莫比乌斯变换最重要的性质就是保圆性,旋转、伸缩、平移、共轭的保圆性不多用说,所以最关键是说明反演的保圆性。

题主所问的是上面的特例, 经共轭反演后为

需要特别说明的,凡经过反演中心的圆,会被映射为直线,但是我们认为直线是半径无穷大的圆。




  

相关话题

  为什么很多领域的理论发展到后来,简洁有力的部分都逐渐消失了?这些领域还可能出现所谓的「终极规律」么? 
  为什么不能说 20℃ 是 10℃ 的两倍? 
  请问为什么无穷个无穷小量的乘积不一定是无穷小量? 
  经济学家的数学是否都很好? 
  面积有限的物体,周长是否有限? 
  高中毕业半年了,还是不会解方程。刚刚还去抖音搜了一下解方程,看了几个视频还是学不会?是不是脑子有问题? 
  将无数个苯连接在一起会生成什么? 
  这个递推数列如何能手工解出来? 
  请问数学上有哪些令人赞叹的,简洁的名言或者结论? 
  闰月可能出现闰正月和闰腊月吗? 

前一个讨论
有哪些神奇的级数求和?
下一个讨论
在线性代数中如何用几何表示非方阵矩阵相乘?





© 2025-01-29 - tinynew.org. All Rights Reserved.
© 2025-01-29 - tinynew.org. 保留所有权利