百科问答小站 logo
百科问答小站 font logo



如何证明方程 x³+y³=2020 没有整数解? 第1页

  

user avatar   wang-kun-yu-12 网友的相关建议: 
      

方法一:

假如方程有整数解.

1)显然,x,y同为奇数或者同为偶数,如果同为偶数,则 ,这不成立,故x,y同为奇数

2)有 . ,从而 都是正整数.因为x,y同为奇数,故 ,进而 1或5或101或505

3)因为x,y都是奇数且 ,故其中一个其中一个模4余1另一个模4余3,也即是模4余-1,进而 ,但1,5,101,505都模4余1,所以这不可能.

结论:假设不成立,上述方程无整数解.

2022.02.21 16:46 更新

有好几个人提到取模7和模9的办法,这两种做法对于关于整数的立方的问题确实更加有效,并且更加具有一般性.一并整理并更新如下.

方法二(模7法):

引理1. 对任意正整数n,有 .

证明. 若n能被7整除,显然 ,若n不能被7整除,由Fermat小定理,有 . 引理1得证.

对于原方程两边模7,有 ,但由引理1, 都模7余0或1或-1,易知这是不可能的,原方程无整数解.

方法三(模9法):

引理2. 对任意整数n,有 .

证明. 若n=3m,此时有 .若 ,有 ,有 .引理2得证.

对于原方程两边模9,有 ,但由引理2, 都模9余0或1或-1,易知这是不可能的,原方程无整数解.

一不做二不休,再来更新一种采用不等式估计的方法.

方法四(不等式估计):

因为

所以

因为所以

又 ,同时因为x+y是个偶数,所以x+y=4或者x+y=20.

若x+y=4,代入(1)式,有 ,继续求解一元二次方程可知x和y都不是整数

若x+y=20,代入(1)式,有 ,显然x和y都不是整数.原方程无整数解.




  

相关话题

  Network Topology网络拓扑有没有好的专业教材? 
  偶极矩的“矩”在哪里? 
  黄金分割数1.618的6次方及更高次幂为什么如此接近整数? 
  十赌九输这句话有根据吗? 
  麻将中一个搭子的听牌张数与构成搭子本身的张数有数学联系吗? 
  求使 y=sqrt(x+a)+sqrt(x+b) 成立的正整数对 (x,y) 的数量这一类的题如何解? 
  如何比较 cos 38° 和 tan 38° 的大小? 
  可以找到两个质数,他们的比值最接近 π 吗? 
  关于这个函数项级数,有没有一些研究成果? 
  常听人说「我吃的盐比你吃的米还多」,这真的有可能吗? 

前一个讨论
信佛学马原学不下去怎么办?
下一个讨论
我是一个十三岁的女生,不喜欢追星看综艺,喜欢研究古埃及,是不是心理不正常啊?





© 2025-05-29 - tinynew.org. All Rights Reserved.
© 2025-05-29 - tinynew.org. 保留所有权利