百科问答小站 logo
百科问答小站 font logo



离散型随机变量有没有概率密度? 第1页

  

user avatar   richard-xu-25 网友的相关建议: 
      

其实有这个定理……


在这个定理下:

(因为N是μ的零测集,μ是P的domination measure,因此N也是P的零测集,所以Theorem 1中等式右侧的第一项为0)。以及看到with respect to μ了吗?


离散型随机变量就是domination measure为counting measure的变量,只要我们能够定义对counting measure的积分,就存在相应的概率密度函数。


我们平时用的“概率密度函数”可以写成积分的形式,其实只是因为连续性随机变量的domination measure为Lebesgue measure(或者应该反过来说……连续性随机变量就是domination measure为Lebesgue measure的变量……),再加上abuse of notation,即我们通常把Lebesgue积分写成Riemann积分的形式而已。



当然,如果题主学的概率论不是从测度角度入手的,那答案就是没有……




  

相关话题

  为什么n维欧式空间中的单位球面(n-1 sphere)的表面积和体积,在 n 趋于 ∞ 时,都趋于0? 
  有哪些让数学专业抓狂的「月经数学题」? 
  数学中为什么要定义各种空间? 
  有没有数学大神,求救? 
  有人认为,数学的本质是计算,另外一个人认为,数学的本质是免于计算,请问相比之下,谁更有道理? 
  83,63,90,70,100,是什么规律? 
  如何通俗地解释马尔科夫链? 
  整数和偶数真的是「一样多」的吗?(我知道康托尔那套,但这个表述真的正确吗?)? 
  高中生如何挽救一塌糊涂的数学? 
  这道题怎么做?不懂? 

前一个讨论
神舟十一号返回,航天员为什么没有自主出舱?
下一个讨论
两个非高斯分布之和一定不是高斯分布吗?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利