百科问答小站 logo
百科问答小站 font logo



为什么被积函数大于零,积分结果就大于零? 第1页

  

user avatar   yu-yiren-62 网友的相关建议: 
      

对于性质定理

若 上的可积函数 则

证明是极其容易的,这只需要对明显的不等式 取 的极限就够了。但是对于如下的加强结论

若 上的可积函数 则

证明就将变得比较困难。务必注意,对严格不等式取极限后通常并不能再保证严格不等,因此,即使我们可以仿前写出 取极限后也至多能得到 这无法排除等式成立的可能性,与待证结论仍有距离。可以预计,这个加强结论的证明,需要花费一点力气。

十分清楚,这证明工作就是要排除这等式,于是我们考虑利用反证法。设若 则当 时, 上和收敛于零。于是,对任意给定的 在 上恒能求得子区间 使得 对所有的 成立。

同时,可以断言 这是因为,对于下述三个非负积分之和当且仅当它们同时为零。

既然如此,完全类似地,对任意给定的 在 中又可求得子区间 使得 于其上小于 且积分为零,反复不断地作这样的推证,就可得到一列闭区间套 使得 对一切 成立。这里,我们总可以保证 的长度以及 均收敛于零,于是依闭区间套定理,必可求得属于一切 的唯一公共点 满足 但这是不可能的,因为将这式子取 的极限后,将得到 矛盾。于是推翻反设,加强结论得证。




  

相关话题

  关于物理旋转体(甜甜圈)模型体积的计算? 
  为什么 Mathematica 不能显示积分过程,即使它能算出最终结果? 
  C语言指针难吗?如何看待数学大v认为指针比范畴论还难? 
  这个世界上有足球、篮球等竞赛的转播,为啥没有数学、物理等竞赛的转播呢? 
  求问数学公式推导? 
  熵权TOPSIS中二级指标的相对接近度怎么计算,一般计算的都是一级指标的相对接近度,困扰我好久了。? 
  数列连续两项之差在满足什么样的情况下可推出数列有界? 
  这个积分不等式题如何证明? 
  如何证明 π>3.14? 
  x^x 的导数怎么算? 

前一个讨论
学好理科真的与智商高低有关吗?
下一个讨论
为什么数学教材里,学生首先学习的就是算术,却不学习作为基础的集合与逻辑?





© 2025-05-14 - tinynew.org. All Rights Reserved.
© 2025-05-14 - tinynew.org. 保留所有权利