先写一个引理。
引理:假设 为正项数列,且 收敛。则存在常数 使得 。
引理证明不太容易。可以参考谢惠民数学分析习题集下册的级数部分,或者搜索Carleman不等式。这里有一个不错的证法:由Cauchy不等式 。代进去得到
引理得证。
回到原题,反设收敛。令引理中的 是 得到 。这个级数的通项至多是 级别的。(严格证明懒得写)而级数 发散,故得到矛盾。从而原级数发散。