百科问答小站 logo
百科问答小站 font logo



如何证明一个数 n 的因子之和是 O(n) 的? 第1页

  

user avatar   travorlzh 网友的相关建议: 
      

第一步:渐近上界

根据题主定义,有 ,因此f是积性函数,所以我们只需要通过考虑n为素数幂的情况来得到更具体的计算公式。当p为素数 时

于是根据算术基本定理,我们得到:

现在进行放缩,得:

其中M满足 ,在确定M前我们可以考虑先代入Mertens公式:

[1]

第二步:确定M[2]

设 满足当 表示第j个素数时 ,则 且:

对两侧同时除以 ,得:

现在利用素数定理,我们得知以下两个结论:

其中第二个式子意味着 ,所以根据夹逼定理我们得知 。而根据 的定义,我们可以设 ,回代至(2)我们就得到了:

而(4)意味着以下不等式成立:

第三步:(5)的取等条件

虽然(5)意味着 但这不足以说明 。此时设 则根据(1),有:

其中最后一个等号利用了zeta函数的欧拉乘积和Mertens公式。再根据 和(3),我们有:

对两侧同时取对数,便有:

最后利用 我们就发现 是(5)的取等条件。综上所述我们得到了因子和的渐近上确界(Gronwall定理)

这预示着题主的猜想是错误的,因子和的阶不是O(n)而是O(nloglogn)。

参考

  1. ^当数论遇上分析(6)——Mertens定理与素数定理 - 知乎 https://zhuanlan.zhihu.com/p/338578631
  2. ^ Gronwall, T. H. (1913). Some asymptotic expressions in the theory of numbers. Transactions of the American Mathematical Society, 14(1), 113–122.



  

相关话题

  为什么对于一阶、二阶导,人们通过直观可以轻易地认识,三阶及以上就很难直观地认识了? 
  利用无理数压缩数据是否可行? 
  该函数的最小值是多少?应该怎么解?思路是什么? 
  数学很好而且喜欢设计的女生去学建筑值得吗? 
  自然科学和唯心主义是矛盾的吗? 
  为什么笛卡尔之前没有人想到平面直角坐标系? 
  孩子的梦想是成为天文学家,怎样帮助他去接近梦想? 
  在初等数学范围内,是否所有拥有递推公式的数列都可求对应的通项公式? 
  请问这道不定积分的题目怎么做? 
  怎么求x的x次方n阶导? 

前一个讨论
如何证明Osgood定理?
下一个讨论
以后会不会出现抗日神剧披着二次元的皮借壳上市的情况?





© 2025-04-04 - tinynew.org. All Rights Reserved.
© 2025-04-04 - tinynew.org. 保留所有权利