百科问答小站 logo
百科问答小站 font logo



有没有什么数字的某个幂次方等于0? 第1页

  

user avatar   yang-xiao-zhou-1-98 网友的相关建议: 
      

其实这个可以更广泛地讨论一下,就是一个环里面有没有0因子,就是说,考虑环 中是否存在 ,使得 ,当然 算是其中的一个特例。

假设 中的任何一个可逆,不妨设 存在,那么 与假设矛盾,所以零因子必然都是不可逆的,所以对于除环而言,不存在0因子,所以实数域、有理数域这种东西肯定是完蛋了。

但是整数环呢,除了 都不可逆啊,怎么还是没有零因子?实际上像整数环这种交换、有幺、无零因子的环被称为整环,整数环不但是整环,还是个主理想整环,从而我们才有唯一的质因数分解。

而只有整环才存在分域一说,如果整数中有0因子,那么就没法定义分数了,因为分数的分子分母可以同乘以一个数保持不变,如果分母是0因子,那么可以乘以一个数变成0,分数就没意义了。

有没有含零因子的环呢?当然有,矩阵环就是典型的例子:

同余环也是典型的例子,除了阶数为素数的同余环是个域外,其他所有的同余环都有0因子,比如模6的同余环中,2和3就是零因子

实际上我们对任何合数 ,都有 。




  

相关话题

  一个数学好的学霸,在看到很多人在埋怨数学很难的时候是什么感觉? 
  0.9999…是否等于1的一个疑问? 
  如何评价 2021 年 1 月 23 日八省联考数学试卷? 
  如何看待π这个无理数? 
  对于一个整环而言,①任意两个非零元的最大公因子存在,②它的不可约元一定是素元,是否等价? 
  中国古代数学形成以计算见长,以解决实际问题为特点的数学理论体系,那为何现代却更重是理论? 
  实变、泛函、抽代、拓扑,哪几门对于非纯数专业更加有用? 
  为什么人人都说数学有用/很重要, 但似乎大多数人(非数学专业)并不会去证明他们用到的数学? 
  周围人太差,太容易自满怎么办(我指的是数学)? 
  有哪些物理系鄙视数学系的经典桥段? 

前一个讨论
哔哩哔哩大会员值得购买吗?
下一个讨论
有什么番剧是开了B站大会员之后一定要看的?





© 2025-06-04 - tinynew.org. All Rights Reserved.
© 2025-06-04 - tinynew.org. 保留所有权利