百科问答小站 logo
百科问答小站 font logo



下一次数学突破会在哪里? 第1页

  

user avatar   bopengbopeng 网友的相关建议: 
      

如果这个问题在 MathOverflow 问,答案很可能会是 Langlands 纲领。

如果说理论物理的终极目标之一是 Theory of everything,那么数学在近几十年来的对应物就是 Langlands program:对于 Galois 表示与自守表示的非常广泛,令人惊讶的联系。

著名的 Fermat 大定理的证明不过是这个宏伟图景的小小一角,而 Witten 等物理学家更希望将它的几何化版本转化为弦论中的对偶,宛如造出一个统一物理与数学的超级万有理论。

事实上,它竟然对于 1 维(abelian class field theory)和 2 维(Taniyama-Shimura)情形成立,已经令人感到很不可思议。粗浅地看来,模形式和椭圆曲线的定义颇有相似之处嘛,椭圆曲线与自己的 Jacobian 的等价很好,模曲线的许多性质都很好啊,Eichler-Shimira 不是也不难嘛。但这些完全不足以解决问题。T-S 目前的证明颇为暴力(关键的一步靠的是 3/5 trick。简单说就是不可能往 3 维再走),对于不可解群我们的大量方法一筹莫展。其实目前 2 维也没有完全解决,Serre 猜想是也解决了,但 Maass form 的情形就还有不少距离。

迹公式(Trace formula)是目前比较有希望的攻坚方法之一。吴宝珠对其中基本引理(Fundamental Lemma)的证明就理所当然地拿了菲尔兹,在往后的道路中至少还能再有 3 个菲尔兹给其中的主要参与者。

那么,为什么正常人类都不会有听说过它呢?因为单单是把 Langlands 纲领的陈述真正说清楚,已经需要太多太多的知识准备。。。比黎曼猜想 Poincare 猜想等等要解释多上十倍的篇幅,对于正常人类基本上是天书。

对了,我最近也在写一个数学教程:【 数学中的具体计算 】包括一些几何、表示论、数论内容,当然也有 Langlands 的更多细节(需要一定的数学基础)。欢迎阅读和提意见建议(有哪里看不明白,也可以在那边留言给我)。

====================================

2018.8 更新:如果您对数学感兴趣,欢迎看我在知乎的更多回答,只输出干货:

最近还刚出版了一本人工智能深度学习的书,感兴趣的同学欢迎关注:




  

相关话题

  两个相邻的质数之和(除了2与3)除二得到的值是合数,有数学证明吗? 
  有哪些比较好的数学建模的评价模型? 
  三角函数存在的意义是什么? 
  这个含正弦函数的和式极限怎么求? 
  是否存在一不等于0的完全平方数,使得它成为连续质数个整数之积? 
  为何常用偶数进制却少见奇数进制? 
  如何评价文章《我为什么不认为韦东奕会有大成就》? 
  如果黎曼猜想被证否了,将会产生什么后果? 
  可不可以将所有无理数全都用 有理数·π 来表示? 
  对局AlphaGo,我完全随机落子,无数盘中能否赢一盘? 

前一个讨论
ICML 2018 有哪些值得关注的亮点?
下一个讨论
CVPR 2018 有什么值得关注的亮点?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利