百科问答小站 logo
百科问答小站 font logo



有哪些直观的现象,最终被数学证明是错误的? 第1页

  

user avatar   pikachuu-76 网友的相关建议: 
      

1:实数轴上取一个点,这个点是有理数点概率为0。即使如此,这依然是会发生的事件,也就是0概率事件不是不可能事件。用实分析角度来讲即:零测集不一定是(大部分情况都不是)空集。

2:总有那么些集合,是无法定义长度的(即可以定义可数可加的测度)

3:处处连续的函数可以处处不可导(威尔斯特拉斯函数),处处可导的函数导函数可以处处不连续(volterra‘s函数)

4:两个周期函数的相加不一定是周期函数

5:并不是所有的函数都可以谈“面积”,即使使用lebesgue积分,也总有那么些牵涉到不可测集的函数是无法处理的

6:有理数和整数一样“多”,并且你不能找到一个集合,它比实数少又比整数多(即:不存在和实数的双射,也不存在和整数的双射),但是很遗憾,你无法找到,也无法证明这样的集合不存在。这就是连续统假设

7:看起来很大的集合可以很小(有理数集稠密但测度为0),看起来很小的集合可以很大(cantor集看起来不断三分变得很小,但是它和实数一样多)

8:你可以一笔画完一整个单位正方形,即使你要画很久(peano曲线)

9:不管你怎么选择公理,只要牵涉到足够多的运算,你总能找到一个命题无法确认真伪(哥德尔不完备性定理)

10:即使一个恒为正值的函数在整个实数轴上广义积分收敛,你也不能说它趋近0。就算你加了连续的条件,你也不能说它趋近0。甚至连有界都不一定能得到。

11:未完待续...




  

相关话题

  可不可以将所有无理数全都用 有理数·π 来表示? 
  明末清初的传教士为什么都知道数学天文历法自然科学?他们是某些个例还是普遍现象? 
  线性代数有什么用?学习线性代数的意义在哪? 
  高次韦达定理是什么?如何证明? 
  如果一个圆的半径无限大,那它还是一个圆吗? 
  极坐标下的二重积分,二次积分下每次积分的几何意义是什么? 
  菲尔茨奖得主都是如何在 22、23 岁就拿到博士学位的? 
  无穷和等于三个数怎么解释? 
  如何看待高中生声称证明哥德巴赫猜想? 
  作为高中生是否应该学习一些超纲的知识(相对论,大学的微积分,量子力学......)这些对高考成绩有影响吗? 

前一个讨论
e^(-x)|sinx|在(0,+∞)与x轴围成的面积怎么算?
下一个讨论
我学数学,女朋友学生化。我老是因为鄙视缺乏定律的学科而跟她吵架。我不想这样,应该怎么办?





© 2025-05-07 - tinynew.org. All Rights Reserved.
© 2025-05-07 - tinynew.org. 保留所有权利