百科问答小站 logo
百科问答小站 font logo



圆锥体的体积公式是怎么推导出来的? 第1页

  

user avatar   PandoraEartha 网友的相关建议: 
      

我们先来一个物理方法, 再来数学方法.

假设现在有 个圆锥和圆柱, , 我们往这个圆柱空间投点, 计算有多少点在椎体内, 有多少点在椎体外的柱体内, 然后计算椎体内的点占所有点的半分比.

如下代码.

解释一下代码, 我一共进行了一亿次模拟. 矩阵 的 列里放的是 的随机数. 分别用来储存点坐标的 .

计算 , 也就是各个点到中心的距离, 存储在矩阵 的 列中, 并筛去那些没有落在圆 内的点.

这样, 我们就可以得到圆柱内的所有点的个数, 储存在 中

下一步我们就是要统计落在圆锥内的点的个数.

对于一个半径为 , 高度为 的圆锥来说, 其在 处的半径为 (相似三角形可证). 所有如果一个点落在椎体内, 一定有

而我们代码里面的 , 所以写成代码就如下所示.

筛去没有落在椎体内的点, 并且统计剩下的点数.

用椎体的点数除以圆柱的所有点数, 就得到了椎体和圆柱的体积之比.

       clear point=zeros(1e8,5); point(:,2:4)=rand(1e8,3); point(:,5)=point(:,3).^2+point(:,4).^2; point(:,1)=floor(point(:,5))*(-1)+1; point(point(:,1)==0,:)=[]; before=size(point,1); point(:,1)=floor(point(:,5)-(1-point(:,2)).^2)*(-1); point(point(:,1)==0,:)=[]; after=size(point,1); volume=vpa(after/before)     

非常不错, 和 非常接近, 所以我们猜测椎体体积是圆柱体体积的 .


那我们怎么用数学证明这个结论呢?

设圆锥体底面积为 , 高度 处的截面积 , , 所以 (相似三角形可证)

所以椎体体积为

所以, 椎体体积为 的底面积乘高, 和数值模拟出来是一样的.


注意, 这里的椎体不一定是圆锥体, 四棱锥, 五棱锥, 任意棱锥也有相同的结论, 也是用相似三角形证明截面积和底面积只比再积分. 只不过四棱锥五棱锥可以看成多个三棱锥的拼接.




  

相关话题

  i 的 i 次方是实数吗? 
  能否把数学竞赛变得更有观赏性? 
  怎么证明算术平均数大于等于几何平均数? 
  智商极高是怎样的体验? 
  如何通俗理解常微分方程,解对初值的连续依赖性? 
  到底是用实数定义了复数,还是用复数定义了实数? 
  为什么需要证明「1+1=2」? 
  作为高中生是否应该学习一些超纲的知识(相对论,大学的微积分,量子力学......)这些对高考成绩有影响吗? 
  数列{tan n/n}有界吗? 
  学习数学时你能保持多长时间集中注意力? 

前一个讨论
有且仅有函数e^x的导数与本身相等吗?如何证明?
下一个讨论
这两道的极限怎么求?





© 2025-06-18 - tinynew.org. All Rights Reserved.
© 2025-06-18 - tinynew.org. 保留所有权利