百科问答小站 logo
百科问答小站 font logo



拓扑学上的紧致性怎样理解?有何运用? 第1页

  

user avatar   dhchen 网友的相关建议: 
      

谢邀:紧性是空间最重要的性质之一,所谓的理解是建立在应用基础上的,离开这些例子,光靠解释是没用的。反过来,如果你都知道一些例子,你自己大概也能归纳出来。本质上紧性是允许我们像处理有限维空间那样处理一些无限维空间。 特别的的,连续函数在一般的拓扑空间上的有界闭集上不一定有界,但是在紧集上确是可以达到最大最小值。我在下面的回答中列出了大量有限维和无限维上“函数”的区分:

能不能把泛函简单地理解为函数? - dhchen 的回答 - 知乎

就算是一个拓扑里面紧性也可以定义两种:紧和列紧为了讨论方便,我只谈列紧性。对于一个(列)紧集, 必然有子列 收敛到某个点 。紧性的用处很大,下面我举两个例子:

第一,利用紧性得到某个极小值,然后这个极小值可以推出所要的数学结果。比如,它可以证明代数基本定理:






第二,偏微分方程上证明解存在性的一个思路是这样的:为了解 ,我们首先找出容易解的一列方程 使得 ,算出他们的解 ,然后证明它们在一个紧集合内,自然你可以找出一个极限 ,于是我们有 。下面我举一个例子。






第三,很多偏微分方程等价于某个拓扑空间上泛函的极小值问题:

研究增这类泛函极小值的方法:变分法的direct method里面第一条就是利用紧性来证明极小值的存在性。举个例子:带有第一类边界条件的

弱解的存在性等价于

在希尔伯特空间 上泛函极小值。level set

在某个弱拓扑下是列紧的,从而基于这个泛函的弱列下半连续性可以推导出极小值是存在的。





  

相关话题

  所有正方形的数量与所有长方形的数量相等吗? 
  数学建立的最底层的逻辑基础1+1=2如果被否认后,现在数学及文明的大厦是否会崩溃? 
  (xⁿ - 1)/(x - 1) = y² 这个不定方程蕴含了哪些知识? 
  请问费马大定理写成方程形式是否可以证明? 
  如何看待现在小学生学习微积分? 
  为什么计算圆的周长与面积、球的表面积与体积,使用的都是 π,而不是三个不同的数?是偶然还是必然? 
  锐角三角形的内接三角形中垂足三角形周长最短,怎么证明? 
  设平面无限点集 S 满足任意两点的距离都是正整数,如何证明 S 中的点全共线? 
  在你读过的论文中,最离谱的错误有哪些? 
  流汗黄豆有什么数学表达? 

前一个讨论
哈利·波特如果是个女孩的话,故事会怎样?
下一个讨论
怎样才算一份好的书单?





© 2025-06-26 - tinynew.org. All Rights Reserved.
© 2025-06-26 - tinynew.org. 保留所有权利