百科问答小站 logo
百科问答小站 font logo



哪些数学命题可以用复数优雅地证明? 第1页

  

user avatar   Revue-Starlight 网友的相关建议: 
      

说三个吧,第一个是我中学时看到的,直到现在我都觉得这个证明十分优雅。

(de Brujin) 若矩形 被划分成若干个小矩形,且每个小矩形都有(至少一条)整数边,则原矩形 也至少有一条整数边.

证明:考察任意矩形 ,设其两条边分别是 轴,顶点是 .

考察 上的积分 .

因为 ,所以

所以积分等于0等价于矩形有整数边.

现在考察 上的积分 ,因为每个小矩形都至少有一条整数边,所以 在每个小矩形上都是0,因此在 上也是0,从而 也有一条整数边. Q.E.D

第二个是泛函分析里的一个例子,关于Hilbert空间上有界正规算子的一个定理.

(Fuglede-Putnam定理) 是(复)Hilbert空间, 是其上的有界正规算子,设 也是 的正规算子且满足 ,则 .

证明:由 易知对任意 有 . 对 ,我们有

即 ,从而 .

由于 是正规算子,立知

记 ,显然其为整函数,容易验证其也是有界的,故由Liouville定理 是常数.

从而 即证. Q.E.D

最后是调和分析里重要的插值定理之一:

(Riesz-Thorin插值定理) 设 测度空间,设 是线性算子,且在 都有界,则对 也是有界映射. 进一步, 我们有

其中 .

证明:等我上午体检完再把证明写一写吧 >> 溜了溜了




  

相关话题

  999的99次方是什么概念? 
  斐波那契数列是如何被应用到证券市场的? 
  有人认为,数学的本质是计算,另外一个人认为,数学的本质是免于计算,请问相比之下,谁更有道理? 
  河洛理数河洛真数河洛精蕴先看哪一本? 
  谈一谈你读过的印象最深的几篇论文,里面有哪些原创性的启发性的思想? 
  怎么用特征根法和不动点法求数列的通项公式? 
  为什么矢量可以任意平移? 
  有哪些有趣而著名的悖论? 
  大学数学系四年要学哪些东西? 
  高次多项式不等式中「奇穿偶不穿」的原理是什么?求讲解,推导,数学证明。? 

前一个讨论
Rⁿ 中任意单连通的开集是否都同胚于 Rⁿ?
下一个讨论
嫁错人和不结婚哪个更可怕?





© 2025-04-24 - tinynew.org. All Rights Reserved.
© 2025-04-24 - tinynew.org. 保留所有权利