百科问答小站 logo
百科问答小站 font logo



照亮一个球面至少需要几个点光源? 第1页

  

user avatar   maigo 网友的相关建议: 
      

在三维空间中,三个点光源是不够照亮整个球面的。这是因为:三个点可以确定一个平面,过球心作直线与此平面垂直,直线与球面交于两点,其中距光源所在平面较远的那个交点一定是照不亮的。而四个点光源是能够照亮整个球面的,只要让以四个点光源为顶点的四面体包含整个球面就行了。

类似地,在 n 维空间中,n 个点光源不够照亮整个 n 维球的表面。这是因为:n 个点可以确定一个 n-1 维超平面,过球心作直线与此超平面垂直,直线与 n 维球的表面交于两点,其中距超平面较远的那个交点一定是照不亮的。而 n+1 个点光源就能照亮整个 n 维球的表面,只要让以 n+1 个点光源为顶点的超立体包含整个球面就行了。


user avatar   ling-jian-94 网友的相关建议: 
      

给一个代数一点的方法。点光源能照亮球面上某个点的条件是,点到光源连线形成的向量与该点的法向量夹角小于90°,也就是向量内积大于0。不难发现,由于法向量与球心到球面点的连线是同向的,因而前面的内积严格小于球心到光源连线与法向量的内积,而只要球的半径足够小,两者的差距可以任意小。这样,我们只需要研究球心到光源连线的向量,与任意球面法向量的内积即可,如果该点可以照亮,则至少有一个光源对应向量,与这个法向量的内积为正。

设n维空间中有m个点光源,这m个点光源对应向量按行向量组合,可以构成一个m×n的矩阵,如果它乘以任意向量得到的结果,都至少有一个坐标为正,则可以照亮整个球面。下面证明至少m=n+1才能符合前面的条件。

若m<n,则矩阵一定无法列满秩,一定存在一个向量,右乘矩阵得到0向量,一定无法被照亮。

若m=n,如果矩阵不满秩,跟前面的情况一样;如果矩阵满秩,则矩阵可逆,那么A^(-1) * (-1, -1, ..., -1)^T这个向量不满足条件,因而无法全部照亮。

任取一个n维的满秩矩阵A,补充一行(-1, -1, ..., -1) * A,则当A与某个向量的乘积各个分量都为负时,最后一行与这个向量的内积为正,也就满足了条件。


user avatar   liu-yang-zhou-23 网友的相关建议: 
      

把光源放球内部。


user avatar   chen-chen-32-93-89 网友的相关建议: 
      

被各种朋友嘲笑订阅太低,比如跳舞:哥均订比你高订高,比如香蕉:我有四五万均订,七万高订,比如某表姐:日订阅破十一万人民币,比如三少:我每个月订阅都有好几十万呢,都是零花钱,比如奥斯卡:断更涨订阅,真的涨订阅……

感觉特别屈辱。

最屈辱的是经常有些新人跑过来,兴高采烈的说:蛤蟆哥哥,我均订破万了。你嫉妒的恨不得掐死他……




  

相关话题

  泊松换元公式有直接用二重积分换元而不变为曲面积分的方法吗? 
  微分符号 dx、dy 表示什么含义? 
  如何准备2021高教社杯全国大学生数学建模竞赛? 
  这个级数是怎么得到的? 
  在开区间上无界的连续函数一定不一致连续吗? 
  请问下面两个极限问题如何解决? 
  是否存在仅在一点可导且该点导数不为0的函数? 
  ∫(0, +∞) (sinx/x)^n 是否有一般公式 ? 
  为什么数列可以用不动点法,到底表示什么意思啊? 
  过两球面交线的正圆柱方程怎么求? 

前一个讨论
如果好莱坞来拍《流浪地球》应该如何?
下一个讨论
如何看待王源录取到伯克利音乐学院(Berklee College of Music)?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利