感谢大佬邀(钓)请(鱼).
我们一般所说的展开,是指的是可展曲面,例如柱面、锥面;而球面是没办法展的,即“不可展曲面”. 那么“可展”是怎么回事呢?
高斯大神很完美地解决了这个问题:他发现凡是可展的曲面,它的高斯曲率为零,反之亦然. 更近一步,他定义了所谓第一基本形式
而可展曲面的第一基本形式都可以通过等距变换(不改变第一基本形式)而化为 ,也就是平面上的欧氏度量,当且仅当它的高斯曲率为 . 而对于一般的曲面,充其量只能化为 .
所以找到这个等距变换,我们就可以将这个可展曲面“展开”——映为平面.
高斯曲率,就是曲面在一点处的两个主曲率的乘积 .
微观上,高斯曲率为零,就意味着至少有一个主曲率为零,也就是说在此方向上本来就是“直”的,所以将与之正交的另一个方向“掰直”就好了;两个正交的方向都是直的,局部上它就是一块平面. 而且这个掰直的过程不会影响前者的曲率始终为零. 于是乘积永远是零. 也就是说,其中一个主曲率为零,给另一个主曲率的变化带来了极大的自由——这就是可展的原因.
但是对于非可展曲面,即高斯曲率不为零,你想将其中一个主方向掰直,另一个主方向也会跟着变化,一个想变直,另一个就变得更弯,因为要保证两者乘积不变. 最终,你哪个也别想掰直.
越说越觉得奇怪……
(在连续处)保角保距保直线的(几乎处处)连续映射。