百科问答小站 logo
百科问答小站 font logo



一个整数可以拆成两个整数的平方和,5201314可以拆成哪两个数的平方和? 第1页

  

user avatar   wen-da-xue-shi-56 网友的相关建议: 
      

首先我们应该知道下述结论:

定理 1:对素数 , 能表示成两个整数的平方和当且仅当 .

定理 2:对 ,有

由于 ,且由 定理 1 可知

又由 定理 2

从而有

其实我们还可以进一步将 表示成三个整数的平方和.

这种操作可以继续做下去,可将 表示成四个整数的平方和. 其实将一个数表示成整数的平方和是比较容易的,但要将一个数表示成整数的立方和却比较困难. 那么是否可以将 表示成两个整数的立方和或者三个整数的立方和呢?要想回答这个问题,我们得知道下述事实:

定理 3:一个整数 能表示成两个整数的立方和当且仅当 有正因子 ,使得 为一个整数的平方.

猜想:一个整数 能表示成三个整数的立方和当且仅当 .

可以验证,对于 的任一正因子 , 都不是一个整数的平方,故由 定理 3 知 不能表示成两个整数的立方和. 又直接计算可知 ,从而若上述猜想成立,则 可以表示成三个整数的立方和,但不知道可以表示成哪三个整数的立方和.

补充:

1. 整数表示成二数平方和的充分必要条件

定理 4:对整数 , 能表示成两个正整数的平方和当且仅当

其中 为素数且满足 , , 而 为非负整数且 不全为零,若 全为零则 为奇数.

2. 表示成二数平方和的算法

定理 5:设 为素数,令 . 若 满足

则 .

注:上述算法是数学家 Gauss 在 1825 年构造出来的,但并不是最好的算法. 事实上,将 的素数表示成两个整数的平方和的算法有好几种,但算起来计算量都挺大的,跟暴力计算好像没太大差别.




  

相关话题

  数学本科生学一门课(比如代数几何2)到一半时失去动机不感兴趣了,应该如何决定是继续肝还是放弃掉学别的? 
  什么是勾股定理? 
  既然牛顿的导数理论是有问题的,为什么现在高中依然在教牛顿的导数理论而不是威尔斯特拉斯的 ε-δ 语言? 
  日本麻将中的复合役是否可以认为是独立事件? 
  为什么不存在收敛速度最慢的级数? 
  从事数学研究的你可以分享一下当时学习本科基础课程的经验吗? 
  从小到大,老师教的到底是数学还是做题? 
  八股取士/微积分是否为教育上的「毒瘤」? 
  能不能出一道很难的数学题,答案是 629,宿舍当门牌用? 
  数学与物理是什么关系? 

前一个讨论
玩Galgame之后,你失去了什么,得到了什么?
下一个讨论
不觉得最大熵原理很奇怪吗?





© 2025-04-02 - tinynew.org. All Rights Reserved.
© 2025-04-02 - tinynew.org. 保留所有权利