百科问答小站 logo
百科问答小站 font logo



没有基的线性空间,是否可以构造,如何构造? 第1页

  

user avatar   dhchen 网友的相关建议: 
      

谢邀:你这个问题在MSE上已经被讨论过了:

Vector Spaces and AC

最重要的知道“任何一个向量空间都有基”和“选择公里”是等价的。 Andreas Blass 在1984年证明了如果“任何一个向量空间都有基”那么“选择公理”成立。

不承认选择公理有两种情况:1,假设它是错的,2.不去理会它的对错,独立于它。

1.假设“选择公里是错误的”(这和不假设选择公里是两回事),那么你自然可以构造出一个没有基的向量空间。因为它们是一回事。也就是说你只能通过假设来证明这个空间存在。

2 首先,离开选择公理后,你需要选择一个公理系统,这个系统独立于选择公理论,不去假设它的对错,那么抱歉,你自然无法证明这个命题"一个线性空间是否一定有基",因为这个系统是独立于选择公理的。我们常见的系统ZF被证明是独立于选择公理的。 这也就是在我们默认的公理系统ZF下,你无法证明是否存在一个没有基的向量空间。自然你也不可能构造出反例。

下面是 Andreas Blass 的论文

math.lsa.umich.edu/~abl

不只是这个命题,下面的命题和都选择公理是等价




  

相关话题

  在一个边长一米的立方体容器内装满圆球,使用直径多少的相同圆球能使装入的圆球总体积达到最大值? 
  如何将一张A4纸快速折出完美的五等份? 
  工科跨考理论数学?有机会上好学校吗? 
  这个式子对吗?若是,具体步骤是什么? 
  为什么熵值最大的分布状态是正态分布而不是均匀分布? 
  为什么美国学生学的数学比我们简单,却还能出很牛逼的东西? 
  概率为1的事件与任何事件独立怎么证明? 
  法国的数学水平那么强,为什么在 IMO 上的成绩却很一般? 
  是否对于任意的正整数n≥2,都存在n个正整数两两之和为平方数? 
  经济学数学化的利弊都有什么?如何看待经济学不断数学化的趋势? 

前一个讨论
凸分析和凸优化有什么推荐的教材吗?
下一个讨论
怎么在家用烤箱烤鸡?





© 2025-04-04 - tinynew.org. All Rights Reserved.
© 2025-04-04 - tinynew.org. 保留所有权利