百科问答小站 logo
百科问答小站 font logo



没有基的线性空间,是否可以构造,如何构造? 第1页

  

user avatar   dhchen 网友的相关建议: 
      

谢邀:你这个问题在MSE上已经被讨论过了:

Vector Spaces and AC

最重要的知道“任何一个向量空间都有基”和“选择公里”是等价的。 Andreas Blass 在1984年证明了如果“任何一个向量空间都有基”那么“选择公理”成立。

不承认选择公理有两种情况:1,假设它是错的,2.不去理会它的对错,独立于它。

1.假设“选择公里是错误的”(这和不假设选择公里是两回事),那么你自然可以构造出一个没有基的向量空间。因为它们是一回事。也就是说你只能通过假设来证明这个空间存在。

2 首先,离开选择公理后,你需要选择一个公理系统,这个系统独立于选择公理论,不去假设它的对错,那么抱歉,你自然无法证明这个命题"一个线性空间是否一定有基",因为这个系统是独立于选择公理的。我们常见的系统ZF被证明是独立于选择公理的。 这也就是在我们默认的公理系统ZF下,你无法证明是否存在一个没有基的向量空间。自然你也不可能构造出反例。

下面是 Andreas Blass 的论文

math.lsa.umich.edu/~abl

不只是这个命题,下面的命题和都选择公理是等价




  

相关话题

  5是一个已知数,设5=x或者x=5,这两个表达的意思在数学和语文表达正确吗? 
  怎么用特征根法和不动点法求数列的通项公式? 
  有没有反三角函数的「和差角公式」? 
  我今年 14 岁,想了一个数学思路,把数学各领域的联系写出来了,这个思路有什么问题吗? 
  数学系的你,喜欢数学还是讨厌数学,还是毫无感觉? 
  如何计算 √5 的近似值? 
  如何看待西南某一211高校的数学系前20名中16人选了应用数学4人选了统计学,现在数学这么香吗? 
  为什么left adjoint的存在性和comma category有关? 
  为什么俄罗斯的文学、数学、音乐都那么强,诞生了好多大牛? 
  外国人是不是也背诵乘法口诀? 

前一个讨论
凸分析和凸优化有什么推荐的教材吗?
下一个讨论
怎么在家用烤箱烤鸡?





© 2025-06-26 - tinynew.org. All Rights Reserved.
© 2025-06-26 - tinynew.org. 保留所有权利