百科问答小站 logo
百科问答小站 font logo



没有基的线性空间,是否可以构造,如何构造? 第1页

  

user avatar   dhchen 网友的相关建议: 
      

谢邀:你这个问题在MSE上已经被讨论过了:

Vector Spaces and AC

最重要的知道“任何一个向量空间都有基”和“选择公里”是等价的。 Andreas Blass 在1984年证明了如果“任何一个向量空间都有基”那么“选择公理”成立。

不承认选择公理有两种情况:1,假设它是错的,2.不去理会它的对错,独立于它。

1.假设“选择公里是错误的”(这和不假设选择公里是两回事),那么你自然可以构造出一个没有基的向量空间。因为它们是一回事。也就是说你只能通过假设来证明这个空间存在。

2 首先,离开选择公理后,你需要选择一个公理系统,这个系统独立于选择公理论,不去假设它的对错,那么抱歉,你自然无法证明这个命题"一个线性空间是否一定有基",因为这个系统是独立于选择公理的。我们常见的系统ZF被证明是独立于选择公理的。 这也就是在我们默认的公理系统ZF下,你无法证明是否存在一个没有基的向量空间。自然你也不可能构造出反例。

下面是 Andreas Blass 的论文

math.lsa.umich.edu/~abl

不只是这个命题,下面的命题和都选择公理是等价




  

相关话题

  如何评价「神经网络本质不过是初中生都会的复合函数」? 
  想问下大神连续函数不一定有界的证明? 
  对人类推动最大的学科是物理还是数学? 
  为什么不会类推,举一反三能力太差? 
  有哪些第一眼就惊艳到你的公式? 
  请问这样证明角谷猜想有什么错误吗? 
  请简单地表述结合律和交换律的区别和联系。结合律为什么那么普遍? 
  三个蛋挞,分别是紫薯的、提子的、黄桃的,有 80% 的把握第一个是紫薯的,有 80% 的把握最后一个是黄桃的,中间的那个是提子的概率是多大? 
  小学奥数可以难到什么程度? 
  请问这个抽象代数题怎么证明? 

前一个讨论
凸分析和凸优化有什么推荐的教材吗?
下一个讨论
怎么在家用烤箱烤鸡?





© 2025-05-16 - tinynew.org. All Rights Reserved.
© 2025-05-16 - tinynew.org. 保留所有权利