百科问答小站 logo
百科问答小站 font logo



如何证明对于任意大于 1 的正整数 n,(1+√2+√3+…+√n) 均为无理数? 第1页

  

user avatar   zou-yan-yi-25 网友的相关建议: 
      

设 为小于n的所有素数,则如果我们能够证明 那么我们就能说明 线性无关,这里表两两不同素数乘积。下面我们说明这一点,假设线性相关,而 l是使得的最小的l,则 ,这里的 看作 的一个子集,如果 ,其中每个 都是有理数,显然,右边不全为0,也不止一项,设 在右边出现又不全部出现,则右边可以表示为 形式,两边平方一下,就有 ,其中 都不含有 项,而 ,则与我们所设l是使得的最小的l矛盾.所以形如的这些项不线性相关.

回到原题,将这个和写成 形式,则 而若其又为有理数,即刻可推出矛盾.




  

相关话题

  数学中的错误有大错和小错的区别吗? 
  数理特长生学医的话是人才浪费吗? 
  能分享一道如果“注意不到”就出不来的数学题吗? 
  如何证明调和级数前n项和(n大于等于2)不为整数? 
  数列{tan n/n}有界吗? 
  是不是智商超高的人普遍研究数学或物理,很少有研究文学历史这类的?为什么大家普遍认为理科好就是智商高? 
  数学中的“π”是加何推算的? 
  1 不可以被 3 除尽,但为什么圆可以被三等分? 
  这种不等式的本质是什么? 
  Alice 和 Bob 各有一个 0-9 的数,他们怎样能在不暴露自己数的前提下知道双方数字是否相同? 

前一个讨论
现在还能通过自学成为数学家吗?
下一个讨论
能否推荐一些适合高中生学习微积分的书籍?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利