设 为小于n的所有素数,则如果我们能够证明 那么我们就能说明 线性无关,这里表两两不同素数乘积。下面我们说明这一点,假设线性相关,而 l是使得的最小的l,则 ,这里的 看作 的一个子集,如果 ,其中每个 都是有理数,显然,右边不全为0,也不止一项,设 在右边出现又不全部出现,则右边可以表示为 形式,两边平方一下,就有 ,其中 都不含有 项,而 ,则与我们所设l是使得的最小的l矛盾.所以形如的这些项不线性相关.
回到原题,将这个和写成 形式,则 而若其又为有理数,即刻可推出矛盾.