百科问答小站 logo
百科问答小站 font logo



如何证明对于任意大于 1 的正整数 n,(1+√2+√3+…+√n) 均为无理数? 第1页

  

user avatar   zou-yan-yi-25 网友的相关建议: 
      

设 为小于n的所有素数,则如果我们能够证明 那么我们就能说明 线性无关,这里表两两不同素数乘积。下面我们说明这一点,假设线性相关,而 l是使得的最小的l,则 ,这里的 看作 的一个子集,如果 ,其中每个 都是有理数,显然,右边不全为0,也不止一项,设 在右边出现又不全部出现,则右边可以表示为 形式,两边平方一下,就有 ,其中 都不含有 项,而 ,则与我们所设l是使得的最小的l矛盾.所以形如的这些项不线性相关.

回到原题,将这个和写成 形式,则 而若其又为有理数,即刻可推出矛盾.




  

相关话题

  傅里叶级数和傅里叶变换是什么关系? 
  圆周率 π 应该如何用极限或其它的微积分语言表示?是否可用极限或其它的微积分语言定义圆周率 π ? 
  Ln(-3-3i)等于多少? 
  如何直观地理解群论? 
  如何推导公式?其意义何在? 
  请问《数字情种》是否可能翻拍成电影? 
  基础薄弱怎么学好高中数学? 
  矩阵最小多项式的几何意义是什么? 
  为何诺贝尔奖得主大多白发苍苍,但规定得主年龄必须在四十岁以下的菲尔兹奖是数学界的最高荣誉之一? 
  格林公式为什么不对称啊? 

前一个讨论
现在还能通过自学成为数学家吗?
下一个讨论
能否推荐一些适合高中生学习微积分的书籍?





© 2025-04-05 - tinynew.org. All Rights Reserved.
© 2025-04-05 - tinynew.org. 保留所有权利