首页
查找话题
首页
只有三维向量有向量积吗?
只有三维向量有向量积吗? 第1页
1
zhangchern-70-41 网友的相关建议:
除了3维,7维也有向量积。当然,前提是你心中如何定义向量积。
可以参考下图中的文献。
应用例子:利用八元数乘法可以在6维单位球面S^6上诱导出一个近复结构J,但不可积。
只有三维向量有向量积吗? 的其他答案 点击这里
1
相关话题
有哪些虽然正确但却没啥用的公式?
钱学森当年在中科大的考题之求解:从地球上发射一枚火箭,绕过太阳,再返回到地球上来,请列出方程、求出解?
能否用矩阵的秩来证明?
基础数学的非线性泛函分析研究什么?
上初三的女儿对我说,觉得学数学、化学、物理什么的都没有意义,我该怎么回答她?
为什么有些学数学的看不惯甚至鄙视 Deep Learning?
有哪些神奇的级数求和?
一个数介于 2 和 3 之间,那么它为无理数和有理数的概率分别为多少?
为什么现在的人很轻松就能掌握几百几千年前顶尖数学家才能掌握的知识?
柯西黎曼条件为什么这么神奇?
前一个讨论
海森堡当年不知道矩阵,他是怎么想出矩阵力学的?
下一个讨论
为什么洛伦兹力不会做功,而安培力可以?
相关的话题
为什么数学专业要学计算机?
用人话来解释下模空间是啥?
如何理解拉格朗日乘子法?
中国数学教育水平在全世界怎样?
我好喜欢数学,学不好,怎么办?
如何证明Metropolis Hastings algorithms)能够达到马尔科夫稳态?
不规则四边形内如何获得面积最大的椭圆?
向量奔驰定理有哪些证明?
抽象代数,如果G是一个奇数阶群,则G中的任何元都是一个唯一确定的元的平方,怎么证明,尤其是唯一性证明?
这个题怎么求概率?
为何生命科学、心理学领域的学术丑闻比数学、物理、天文领域的多那么多?
有哪些必赢的赌局?
有哪些不同的物体,他们沿所有轴的转动惯量都相同?
如何通俗地理解「蒙特卡洛方法」,它解决问题的基本思路是什么,目前主要应用于哪些领域?
比特币挖矿一定要用计算机吗?用纸笔来计算可行吗?
有哪些美丽或神奇的理科公式?
前N个整数的最小公倍数有没有近似公式?
经济学数学化的利弊都有什么?如何看待经济学不断数学化的趋势?
一元微分理论中,为什么 d(dy/dx)/dx=d^2y/(dx)^2 ?
你在生活中用过最高端的数学知识是什么?
「剪刀石头布」游戏还有其它变种吗?
三进制为何比二进制更好?
如何用数学卖个萌?
怎样理解任何有限集都是紧集?
关于这个函数项级数,有没有一些研究成果?
如何用数学证明活着就有希望?
请问以下两个概率问题的答案是否一样?
如何看待有的物理学家说物理学就是几何学,以及物理学需要新的几何学注入活力?
三分之一等于零点三三循环,而三分之一乘3等于一,用零点三三循环乘三却等于零点九九循环?
「剪刀石头布」游戏还有其它变种吗?
服务条款
联系我们
关于我们
隐私政策
© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利