百科问答小站 logo
百科问答小站 font logo



有限群的群行列式因式分解后,各因式的次数是否与重数相等? 第1页

  

user avatar   zerojz 网友的相关建议: 
      

对一般的有限群,这个性质也是对的。这个定理叫 Frobenius Determinant Theorem. (感谢 @Chen Ivy 科普)

简单解释一下:令 是一个有限群。假如 有一个复表示 ,且 是一堆不可约表示 的直和。那么根据线性代数知识, , 这个线性映射就可以限制到各个不可约子表示上得到 ,且 。左右两边是对任意 都成立的等式,从而我们可以把 换成变量 仍然使得等式成立。可以证明,在 是不可约表示的时候, 也是一个不可约多项式。


下面考虑 是群代数(也就是 是 regular rep) 的情况,根据表示论知识,我们知道 会分解成不可约表示 的直和 ,其中 是共轭类个数, 。所以代入上面的行列式公式,我们就有 。(我们甚至有 其中 是群的阶数。)

最后,注意到“元素” 在基 下的矩阵的行列式就是群乘法表替换为对应变量后的矩阵的行列式 (up to a sign),从而证明结束。

假如想知道不依赖表示论的证明,可以参考 [2].


Reference:

[1] en.wikipedia.org/wiki/F

[2] Dickson, Leonard Eugene. "An Elementary Exposition of Frobenius's Theory of Group-Characters and Group-Determinants."Annals of Mathematics, Second Series, 4, no. 1 (1902): 25-49.

[3] Conrad, K. (1998). On the origin of representation theory. Enseignement Mathematique, 44(1998), 1–23.




  

相关话题

  因子分析法求权重,两个指标可以用这个方法吗?这个方法的优势是什么? 
  n! 是否是一个完全平方数? 
  如何用准确的数学语言证明:两素数分别n次方后还是互素? 
  985工科毕业生想跨考基础数学,是理性伟大还是自负骄傲(中二病)? 
  一年级孩子没有提前学过数学。在学校被老师贴上反应慢的标签。是我没有提前给孩子上课,做错了吗? 
  数学思维在生活中有多大用处? 
  加法交换律 a+b=b+a 是怎么证明的? 
  学习高中数学真的有用吗? 
  素数的 Willans 公式是否正确? 
  单调的环境下永生能让人变成傻子吗? 

前一个讨论
云南女大学生被害,虽为陌生人,但我却对这位姑娘的遇害有种想哭出来的心痛,这是为什么?
下一个讨论
如何证明五点共圆问题?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利