百科问答小站 logo
百科问答小站 font logo



有限群的群行列式因式分解后,各因式的次数是否与重数相等? 第1页

  

user avatar   zerojz 网友的相关建议: 
      

对一般的有限群,这个性质也是对的。这个定理叫 Frobenius Determinant Theorem. (感谢 @Chen Ivy 科普)

简单解释一下:令 是一个有限群。假如 有一个复表示 ,且 是一堆不可约表示 的直和。那么根据线性代数知识, , 这个线性映射就可以限制到各个不可约子表示上得到 ,且 。左右两边是对任意 都成立的等式,从而我们可以把 换成变量 仍然使得等式成立。可以证明,在 是不可约表示的时候, 也是一个不可约多项式。


下面考虑 是群代数(也就是 是 regular rep) 的情况,根据表示论知识,我们知道 会分解成不可约表示 的直和 ,其中 是共轭类个数, 。所以代入上面的行列式公式,我们就有 。(我们甚至有 其中 是群的阶数。)

最后,注意到“元素” 在基 下的矩阵的行列式就是群乘法表替换为对应变量后的矩阵的行列式 (up to a sign),从而证明结束。

假如想知道不依赖表示论的证明,可以参考 [2].


Reference:

[1] en.wikipedia.org/wiki/F

[2] Dickson, Leonard Eugene. "An Elementary Exposition of Frobenius's Theory of Group-Characters and Group-Determinants."Annals of Mathematics, Second Series, 4, no. 1 (1902): 25-49.

[3] Conrad, K. (1998). On the origin of representation theory. Enseignement Mathematique, 44(1998), 1–23.




  

相关话题

  计算机能不能真正意义上存储一个无理数? 
  高中数学的符号怎么在电脑上打出来,比如说数列的an,函数e的x次方等等? 
  无穷等于无穷吗? 
  如何确定下面三角恒等式中的系数? 
  欧氏空间到自身的局部同胚、连续、满映射,是否一定是单射? 
  为什么部分大一学生认为线性代数听不懂? 
  10/89 小数部分前 5 位可以构成斐波那契数列,这是一种巧合吗? 
  为什么很多中国人认为刻苦钻研数学的人会成为科学家而刻苦钻研哲学的人则会发疯? 
  如何看待哈佛大学数学教授姚鸿泽认为分析,几何和拓扑当初学不应当过于纠结细节,而应当快速进入核心内容? 
  如何从初一开始努力考上合肥168中学(省内知名高中)? 

前一个讨论
云南女大学生被害,虽为陌生人,但我却对这位姑娘的遇害有种想哭出来的心痛,这是为什么?
下一个讨论
如何证明五点共圆问题?





© 2025-04-04 - tinynew.org. All Rights Reserved.
© 2025-04-04 - tinynew.org. 保留所有权利