百科问答小站 logo
百科问答小站 font logo



有限群的群行列式因式分解后,各因式的次数是否与重数相等? 第1页

  

user avatar   zerojz 网友的相关建议: 
      

对一般的有限群,这个性质也是对的。这个定理叫 Frobenius Determinant Theorem. (感谢 @Chen Ivy 科普)

简单解释一下:令 是一个有限群。假如 有一个复表示 ,且 是一堆不可约表示 的直和。那么根据线性代数知识, , 这个线性映射就可以限制到各个不可约子表示上得到 ,且 。左右两边是对任意 都成立的等式,从而我们可以把 换成变量 仍然使得等式成立。可以证明,在 是不可约表示的时候, 也是一个不可约多项式。


下面考虑 是群代数(也就是 是 regular rep) 的情况,根据表示论知识,我们知道 会分解成不可约表示 的直和 ,其中 是共轭类个数, 。所以代入上面的行列式公式,我们就有 。(我们甚至有 其中 是群的阶数。)

最后,注意到“元素” 在基 下的矩阵的行列式就是群乘法表替换为对应变量后的矩阵的行列式 (up to a sign),从而证明结束。

假如想知道不依赖表示论的证明,可以参考 [2].


Reference:

[1] en.wikipedia.org/wiki/F

[2] Dickson, Leonard Eugene. "An Elementary Exposition of Frobenius's Theory of Group-Characters and Group-Determinants."Annals of Mathematics, Second Series, 4, no. 1 (1902): 25-49.

[3] Conrad, K. (1998). On the origin of representation theory. Enseignement Mathematique, 44(1998), 1–23.




  

相关话题

  全体自然数的发散级数和等于负十二分之一代表了什么?隐藏了一个天大的秘密吗? 
  全体质数的倒数和是发散的还是收敛的?如果收敛,收敛到多少?(多重问题预警)? 
  智力很高,且只喜欢探索真理,不想做作题家,怎么去大学里蹭课? 
  如何评价王萼芳的高等代数教材? 
  小偷能逃出无数个警察的包围圈吗? 
  定义怎么证明这个阶乘极限? 
  如何证明Metropolis Hastings algorithms)能够达到马尔科夫稳态? 
  如何理解矩阵的复数特征值和特征向量? 
  在初等数学范围内,是否所有拥有递推公式的数列都可求对应的通项公式? 
  一个天资平平,数学基础非常差的高一学生,打算日后进行纯数研究,是否应该对其进行劝退? 

前一个讨论
云南女大学生被害,虽为陌生人,但我却对这位姑娘的遇害有种想哭出来的心痛,这是为什么?
下一个讨论
如何证明五点共圆问题?





© 2025-04-26 - tinynew.org. All Rights Reserved.
© 2025-04-26 - tinynew.org. 保留所有权利