百科问答小站 logo
百科问答小站 font logo



有限群的群行列式因式分解后,各因式的次数是否与重数相等? 第1页

  

user avatar   zerojz 网友的相关建议: 
      

对一般的有限群,这个性质也是对的。这个定理叫 Frobenius Determinant Theorem. (感谢 @Chen Ivy 科普)

简单解释一下:令 是一个有限群。假如 有一个复表示 ,且 是一堆不可约表示 的直和。那么根据线性代数知识, , 这个线性映射就可以限制到各个不可约子表示上得到 ,且 。左右两边是对任意 都成立的等式,从而我们可以把 换成变量 仍然使得等式成立。可以证明,在 是不可约表示的时候, 也是一个不可约多项式。


下面考虑 是群代数(也就是 是 regular rep) 的情况,根据表示论知识,我们知道 会分解成不可约表示 的直和 ,其中 是共轭类个数, 。所以代入上面的行列式公式,我们就有 。(我们甚至有 其中 是群的阶数。)

最后,注意到“元素” 在基 下的矩阵的行列式就是群乘法表替换为对应变量后的矩阵的行列式 (up to a sign),从而证明结束。

假如想知道不依赖表示论的证明,可以参考 [2].


Reference:

[1] en.wikipedia.org/wiki/F

[2] Dickson, Leonard Eugene. "An Elementary Exposition of Frobenius's Theory of Group-Characters and Group-Determinants."Annals of Mathematics, Second Series, 4, no. 1 (1902): 25-49.

[3] Conrad, K. (1998). On the origin of representation theory. Enseignement Mathematique, 44(1998), 1–23.




  

相关话题

  如何看待 Atiyah 对六维球面 S^6 上没有复结构的证明? 
  怎样利用格理论,也就是 minkowski 基本定理来证明拉格朗日四平方和定理以及费马平方和定理? 
  请问这道数竞题怎么做?请大神不吝赐教? 
  数学上那些根本没有任何线索提示的配凑构造技巧到底是怎样被发现的? 
  数学的泛函分析应该怎么学? 
  数学学习或研究中,你见过哪些有意思的反例? 
  有没有一个函数求导后幂会变高? 
  如何评价数学家黎曼的成就与历史地位? 
  科学为何有那么多近似计算?这样是不是和科学的严谨性相违背? 
  张益唐和佩雷尔曼的论文是否说明脱离主流学术圈一样有可能成为顶级数学家? 

前一个讨论
云南女大学生被害,虽为陌生人,但我却对这位姑娘的遇害有种想哭出来的心痛,这是为什么?
下一个讨论
如何证明五点共圆问题?





© 2025-06-26 - tinynew.org. All Rights Reserved.
© 2025-06-26 - tinynew.org. 保留所有权利