百科问答小站 logo
百科问答小站 font logo



怎么通俗地理解张量? 第1页

  

user avatar   xi-yang-86-73 网友的相关建议: 
      

如果一个物理量,在物体的某个位置上只是一个单值,那么就是普通的标量,比如密度。如果它在同一个位置、从不同的方向上看,有不同的值,而且这个数恰好可以用矩阵乘观察方向来算出来,就是张量,比如物体的内应力、转动惯量。


user avatar   whitepillow 网友的相关建议: 
      

如果能翻墙的话,强烈推荐该视频

youtube.com/watch?

讲的非常赞,思路清晰、通俗易懂。

对于不能翻墙的同学,我做个大致的内容摘要(多图)。

两点说明:

1、本人非数学物理专业出身……这方面也没深入研究过,所以一些翻译用词可能不当,欢迎批评指正~

2、可能前半部分有点啰嗦,主要是觉得视频太有爱了,不忍心删掉就都放上来了。

------------------------------

Dan Fleisch是《A Student’s Guide to Vectors and Tensors》的作者,他发现很大一部分读者都有一个疑问:到底张量是TMD什么东西? (What’s a tensor? )

于是乎就做了这个视频,用12分钟来告诉你张量是什么。

想要了解张量(Tensor),首先需要对向量(Vector)有一个清晰的了解。

在我们的课本中,向量通常都是这样一个箭头……用来表示一个既有幅度(magnitude)又有方向(direction)的物理量,比如重力、磁力或者一个粒子的速度。这个箭头的长度表示幅度,箭头的指向表示方向。

此外,向量还可以用来表示一个平面,表示方法就是让向量代表垂直于这个平面的方向(法线方向)。

这么看来,向量可以表示很多东西:表示力、速度甚至平面,不过仔细想想向量也只表示了幅度(magnitude)与方向(direction)两个要素而已。

还有很多物理量用向量是没法表示的(后面会提到),向量其实是一个更广泛的表示方法的特例。对的,你猜对了,这个更广泛的方法就是张量(Tensor)。

为了更好的解释张量是什么,有两个概念需要先搞清楚: 分量 (Components) 与基向量 (Basis Vectors)。

为了搞清楚这个两个概念,我们要引入坐标系……

这里我们引入的是最常见的笛卡尔坐标系(Cartesian coordinate system)

说道坐标系,就一定要想到坐标系的基向量(coordinate basis vector)也称作unit vector,我们用这个小箭头来表示基向量。

基向量的长度是”1”,是你用来描述长度的基础单位。

基向量的方向是你的坐标系的坐标的方向。

在这个坐标系中,在x,y,z轴方向分别有三个基向量。

现在我们有了坐标系(coordinate system)与基向量(basis vector),接下来可以确定分量(components)了。

在这个例子中,那个大箭头向量由4个x基向量,3个y基向量与0个z基向量构成。

所以我们可以用4个x,3个y,0个z来表示那个大箭头向量。

大箭头可以拿走了,现在只需要3个数字(方块,注意方块上写着数字)与3个基向量(小箭头),我们就可以完全还原出大箭头的信息了。

如果大家默认使用同一套基向量,那么基向量(小箭头)都不需要了,我们只需要4,3,0这三个数字(方块)就可以表示那个向量。

这三个数字(方块)就是向量的分量(components)。

此时,想要表示一个向量,只要给定这三个分量即可,它们怎么排列都可以,你也可以把他们立起来。

如果加上两个括号,这就是我们在书上经常看到的向量的列表示……(笑cry了有木有)

总结一下,刚才那个桌子上的大箭头可以用这3个分量(components)与3个基向量(basis vector)表示。

(插一句:请原谅到此为止都讲的内容都是高中知识……因为很有爱啊~下面即将进入正题)

推广一下,对于一个向量A来说,我们用Ax, Ay, Az来表示这三个分量,分别对应向量A在x,y,z基向量方向上的分量。

注意每个分量只有一个下标,因为每个分量只由一个基向量构成(one basis vector per component),所以向量也称为1阶张量(Tensors of rank 1)。

相应的,标量(scalar)也称为0阶张量(Tensors of rank 0),因为标量没有方向,因此也就不存在基向量,可以说标量的每个分量是由0个基向量构成的。

下面来看更高阶的张量。

这是一个在3维空间中的2阶张量。

回顾一下,向量有3个基向量与3个分量。

而现在这里有9个基向量(那些小箭头)与9个分量(那些方块)。

注意现在每个分量有两个下标(例:Axy),而不是之前的一个了。

为什么要用两个下标呢?考虑这个例子:固体物体中某点的受力情况。

想象在该物体里有一个平面,这个平面的朝向需要用一个向量来表示,为了表示该向量需要引入1组(3个)基向量;

在每个平面上又有一个力,这个力则需要用第二个向量来表示,这样对于第一组中每个基向量又引入了第2组(3个)基向量与之组合。

于是就有了桌子上的那3*3个基向量组合。

如果想要表示所有的平面与平面上的力的组合,需要9个分量,每个分量有2个下标(index)来表示该分量由哪两个基向量组合构成。

例:Axx表示在法线为x方向的平面上的方向为x方向的力。

这9个分量与9个基向量共同组成了2阶张量。

继续进一步,这是一个3维空间中的3阶张量。

这个张量有27个基向量与27个分量。

现在每个分量有3个下标,所有的下标组合共有3*3*3=27个,故共有27组基向量(见桌子上那3堆箭头方阵),不同基向量对应一个分量(那堆方块)。

现在可以做一个总结了,什么是张量以及为什么张量这么有用呢?

张量是一种表示物理量的方式,这个方式就是用基向量与分量组合表示物理量(Combination of basis vector and component)。

由于基向量可以有丰富的组合,张量可以表示非常丰富的物理量。

此外,张量所描述的物理量是不随观察者或者说参考系而变化的,当参考系变化时(其实就是基向量变化),其分量也会相应变化,最后结果就是基向量与分量的组合(也就是张量)保持不变。


考虑到张量有如此强大的表示能力,又不随观察者不同而变化,能够有效的表示宇宙间的万物,Lillian R. Lieber给了张量一个形象的称呼the fact of the universe.


user avatar   keke-zhang-86 网友的相关建议: 
      

9月21日,美国总统拜登在和英国首相约翰逊的会面中,突然毫无预兆的要求记者清场,而在那段现场的视频中,似乎有一记者问了一句:“Did he shit?”(“他是不是拉了?”),而旁边的另一位记者回道:"I have no idea,hope the microphone got it。"(“我也不知道,但愿麦克录到了。”)

这段视频流出之后,全世界的舆论场都炸了锅,人们纷纷怀疑,已经是80高龄的拜登,是否在这样严肃的场合,一个不小心,拉在了裤子里,所以才会突然要求清场,而现场的记者是闻到了味道或者听到了声音,才会有此一问。

这个看似荒谬的猜测,却意外的流传极广,以至于向来标榜言论自由的外网都开始大量封杀此类帖文,而美国官方也很快出来辟谣说清场跟总统拜登的身体情况无关,只是出于政治和外交因素,两位领导人必须密谈。

但网民们可不管这么多,美国政府越是删帖和澄清,他们就越是对拜登的“脱粪”深信不疑,传言越传越是有板有眼,之前俄罗斯总统普京的那句“祝他身体健康”也被拉出来反复分析,进一步佐证了拜登的“失禁症状”。

这个曾经代表着“战无不胜,众望所归”的超级大国和世界第一强国,居然以如此不体面的方式迎来了舆论的毁灭性打击,这让许多美国的敌人和反对者都大为诧异。

然而,冷静下来思考,我们会发现,这其中疑点颇多,因为在那段广为流传的视频中,第一位记者在提出疑似脱粪的疑问之后,另一位记者给她的回复是“我希望麦克风录了下来”,如果真的是拉裤子这种事情,被麦克风录下来的可能性实在太小,还不如说希望摄像头拍到了。

即便退一万步,认定确实是拜登没有控制住大小便,但其实他作为一个80岁的老人,出现这种情况也并不稀奇,衰老并不是罪恶,也不至于为此如此残酷的嘲笑一位老人。

因此,拜登如今的被群嘲,可以说只是美国国力衰退的一个缩影,无论拜登是否真的大小便失禁,但他作为美国总统,领导着这个衰退的美国一路火花带闪电的跌下了神坛,曾经的荣耀必然会一道一道全部化作孽力反馈回他的身上。

简而言之就是,如果美国今日没有从阿富汗撤军,新冠也已经完全被控制,那么拜登就是拉的到处都是,也依然会有人跪舔说他这就像廉颇“一饭三遗矢”,是有大将之风,可当美国撤出阿富汗,新冠病死七十万之后,哪怕他这位总统日日正襟危坐,我们也总会怀疑,他屁股底下,是不是粘着什么不雅的东西。​

这,就是今日的世界,就是美国从“谁也打不过”到“谁也打不过”之后,所必须要面对的残酷现实啊。




  

相关话题

  线性代数从矩阵和行列式入门真的是最恰当的学习方法吗? 
  100μw 的功率可以干什么? 
  风会影响声音传播速度吗? 
  如果把科学家看作法师,数学、物理、化学和生物等学科看作魔法分支,世界会是怎样的? 
  金融学及金融从业者如何应对人工智能和大数据? 
  爱因斯坦如果穿越到现在,会改变世界量子计算的格局和发展趋势么? 
  法国的数学水平那么强,为什么在 IMO 上的成绩却很一般? 
  9.99循环这个数存不存在,如果存在,那么它是整数还是无限循环小数? 
  人类对自然科学的探索是否会因其自身的复杂而走向停滞? 
  电机怎样插上电一下达到那么高的转速的? 

前一个讨论
有哪些土木工程专业的冷知识?
下一个讨论
怎么理解汉武帝派罪犯进攻蛮夷西域?





© 2025-01-18 - tinynew.org. All Rights Reserved.
© 2025-01-18 - tinynew.org. 保留所有权利