百科问答小站 logo
百科问答小站 font logo



如何证明一个数 n 的因子之和是 O(n) 的? 第1页

  

user avatar   travorlzh 网友的相关建议: 
      

第一步:渐近上界

根据题主定义,有 ,因此f是积性函数,所以我们只需要通过考虑n为素数幂的情况来得到更具体的计算公式。当p为素数 时

于是根据算术基本定理,我们得到:

现在进行放缩,得:

其中M满足 ,在确定M前我们可以考虑先代入Mertens公式:

[1]

第二步:确定M[2]

设 满足当 表示第j个素数时 ,则 且:

对两侧同时除以 ,得:

现在利用素数定理,我们得知以下两个结论:

其中第二个式子意味着 ,所以根据夹逼定理我们得知 。而根据 的定义,我们可以设 ,回代至(2)我们就得到了:

而(4)意味着以下不等式成立:

第三步:(5)的取等条件

虽然(5)意味着 但这不足以说明 。此时设 则根据(1),有:

其中最后一个等号利用了zeta函数的欧拉乘积和Mertens公式。再根据 和(3),我们有:

对两侧同时取对数,便有:

最后利用 我们就发现 是(5)的取等条件。综上所述我们得到了因子和的渐近上确界(Gronwall定理)

这预示着题主的猜想是错误的,因子和的阶不是O(n)而是O(nloglogn)。

参考

  1. ^当数论遇上分析(6)——Mertens定理与素数定理 - 知乎 https://zhuanlan.zhihu.com/p/338578631
  2. ^ Gronwall, T. H. (1913). Some asymptotic expressions in the theory of numbers. Transactions of the American Mathematical Society, 14(1), 113–122.



  

相关话题

  为什么喝醉的人可以走回家,喝醉的鸟却不能飞回家? 
  为什么几何意义十分明显的数学定理要复杂地去证明? 
  这道定积分题目如何解? 
  一周学完初中三年所有知识可能吗? 
  高考刚结束,有志于学习基础数学,假期想要自学一些大学数学内容,可以使用哪些书籍和习题? 
  x^7+1=(x^4+x^2+x+1)(x^3+x+1) 是如何分解得到的呢? 
  欧拉到底有多厉害? 
  100个金币,只有1个略重,其余99个一样重。给你一个天平,最少称几次能确保找出那个略重的? 
  如何用物理和数学名词写成诗?都有哪些作品? 
  陶哲轩做完一张考研数学卷子一般需要多久? 

前一个讨论
如何证明Osgood定理?
下一个讨论
以后会不会出现抗日神剧披着二次元的皮借壳上市的情况?





© 2025-05-16 - tinynew.org. All Rights Reserved.
© 2025-05-16 - tinynew.org. 保留所有权利