百科问答小站 logo
百科问答小站 font logo



如何比较Keras, TensorLayer, TFLearn ? 第1页

  

user avatar   yao-dong-27 网友的相关建议: 
      

这三个库主要比的是API设计水平,不得不说原始的 Tensorflow API的确反人类,我承认它的完善、表达能力强,性能好,但是接口设计对人类非常不友好。

这就给了做高层抽象API封装的生存空间,Keras Tensorlayer TFLearn 是目前比较成熟的几个库。

做个比喻,Tensorflow就像当年的 Win32 API,功能强大但是难以使用,随便做点小事情就要写很多代码,我清楚记得我写个显示空白窗口的程序就要40来行。

Tensorlayer比较像 WTL,把一些繁琐的代码封装成更容易使用的接口,但是仍然保留了对底层API调用的能力,抽象的层次不高,仍然可以看到底层的 数据结构和网络结构。比如 可以看到 Session和Placeholder等。

TFLearn比较像 MFC,抽象的层次更高,创造了自己的一套子语法,代码可读性更好,屏蔽了底层难以理解的东西。

Keras比较像 Qt,很高的抽象层次,甚至跨越了多个深度学习框架,完全看不到底层的细节了,甚至某些情况需要触碰底层的对象和数据反而非常麻烦。


不同的抽象层次带来不同的学习难度,适应不同的需求。

基本建议:

如果只是想玩玩深度学习,想快速上手 -- Keras

如果工作中需要解决内部问题,想快速见效果 -- TFLearn 或者 Tensorlayer

如果正式发布的产品和业务,自己设计网络模型,需要持续开发和维护 -- Tensorlayer

以上只是个人建议,具体情况因人而异。


user avatar   bigmoyan 网友的相关建议: 
      

景甜:抱歉,是我选的他。




  

相关话题

  插值和拟合最根本的区别是什么?机器学习为啥用拟合?? 
  attention跟一维卷积的区别是啥? 
  机器全面代替人工劳动力的那一天,你能如何生存下去? 
  如何理解 inductive learning 与 transductive learning? 
  神经网络中如果一个重要特征C等于特征A+特征B(算数意义上的相加),选特征的时候还有必要选特征C吗? 
  一个无监督学习算法,如何判断其好坏呢? 
  2021 年了,TensorFlow 和 PyTorch 两个深度学习框架地位又有什么变化吗? 
  机器学习中的机器是如何分辨哪些是有用的知识,哪些是没用的信息呢? 
  深度学习中Attention与全连接层的区别何在? 
  如何评价 Exploring Simple Siamese Learning? 

前一个讨论
有哪些看起来很逼真,但其实是假的照片、人或事?
下一个讨论
用卫星地图环顾全球,为什么只有中国的海岸线污了那么大一片?





© 2025-02-25 - tinynew.org. All Rights Reserved.
© 2025-02-25 - tinynew.org. 保留所有权利