百科问答小站 logo
百科问答小站 font logo



机器学习初学者该如何选读适合自己水平的论文? 第1页

  

user avatar   jing-lue-ji-zhi 网友的相关建议: 
      

巧了,上周末在Reddit的机器学习版块就有一个相关的热门话题


“What are the must read papers for a beginner in the field of Machine Learning and Artificial Intelligence?”

机器学习&人工智能领域有哪些新手必读论文?


大家在这个问题底下也是讨论的热火朝天,纷纷分享自己看过的比较适合新手的论文,咱们一起来看看都有哪些:


  • 《Manifold Mixup: Learning Better Representations by Interpolating Hidden States》

这篇论文不仅简单易懂,而且也不难实现,文中还提出了一些新颖的理论。


地址:arxiv.org/abs/1806.0523


  • 《ImageNet Classification with Deep Convolutional Neural Networks》

这篇论文是剖析 CNN 领域的经典之作,也是入门 CNN 的必读论文。作者训练了一个面向数量为 1.2 百万的高分辨率的图像数据集 ImageNet, 图像的种类为 1000 种的深度卷积神经网络。


地址:

papers.nips.cc/paper/48


  • 入门深度学习(尤其是 CNN 模型和计算机视觉)的 9 篇论文合集

adeshpande3.github.io/T


每篇论文都讲述了一种神经网络,分别代表了深度学习领域的经典模型和重要进展,比如 AlexNet,ZF Net,VGG Net 等。


  • 《Statistical Modeling: The Two Cultures》

这篇论文的作者是大名鼎鼎的随机森林算法发明者 Leo Breiman。该论文发表于 2001 年,

LeoBreiman 指出了当时出现在统计学中的另外一种文化,以及代表这种文化的两种模型:

随机森林和 svm。他同时还指出了这两个模型颠覆了人们对于模型多样性,模型复杂性-预

测准确率矛盾和维度灾难的传统认知,认为我们应该拥抱新文化,新模型。

Leo Breiman 在论文中讲解了多种常见的机器学习算法,比如随机森林、SVM 和逻辑回归等。


地址:

projecteuclid.org/eucli


此外,在 Quora 上也有一个类似问题,底下一些机器学习大牛推荐了不少值得阅读的论文:


  • 《A Few Useful Things to Know about Machine Learning》

华盛顿大学机器学习大牛 Pedro Domingos 写的一篇论文,被奉为机器学习领域的经典入门

论文。Pedro 在论文中强调了几个机器学习领域一些书上学不到的重要常识,还有一些需要

特别注意的地方。阅读这篇论文能帮助你在开发机器学习项目中避开一些弯路。


地址:

homes.cs.washington.edu


  • Hadley Wickham 写的《Tidy Data》

这篇论文详细讲解了机器学习中的数据准备和预处理方法,教你高效为机器学习模型准备干净的数据。


地址:

vita.had.co.nz/papers/t


  • 《No Free Lunch Theorems for Optimization》

本论文提出了著名的 NFL 理论,即“没有免费的午餐理论”。该理论用于比较两种优化算法之间的关系,即如何确定一种算法比另外一种算法好。这对于我们选择机器学习算法具有重要的指导意义。


地址:

ti.arc.nasa.gov/m/profi


  • 《Comparison of Modern Stochastic Optimization Algorithms》

基于梯度的优化方法在机器学习应用中非常普遍,本篇论文比较了 4 种基于梯度的优化方法的性能。阅读该论文能够基本了解这几种机器学习优化方法。


地址:

maths.ed.ac.uk/~prichta


  • 《Dropout: A Simple Way to Prevent Neural Networks from Overfitting》

具有大量参数的深度神经网络是十分强大的机器学习系统,然而过拟合始终是此类神经网络面临的一个大问题。本论文提出了用于解决机器学习过拟合问题的经典方法—— Dropout。


地址:

cs.toronto.edu/~hinton/


在 GitHub 有个项目专门收集了深度学习领域的论文,如果有时间可以看看:

github.com/terryum/awes


对于看论文这项工作,在前文提到的那个 Reddit 话题下,有位网友的观点得到很多人赞同:


在进入一个新领域时,最好先从调查论文和报告着手(更好的当然是看书),而不是单独看专业性论文。如果你对机器学习领域完全是个菜鸟,一定要先看经典的人工智能书籍,比如 Ian Goodfellow 等人写的《深度学习》、Norvig 等人写的《人工智能》。如果没有牢固的基础知识,直接看单篇论文是极其困难的,因为它们通常将大量知识浓缩在寥寥数页里,并没有包含你读懂论文需要掌握的背景知识。就我个人经验而言,看这些论文时,看懂每一段平均要花半小时。然后还需要看大量的参考资料,读起来非常慢。所以,要想从论文中高效获得知识,建议首先选一个你感兴趣的大的话题领域,然后阅读该领域的书籍和调查论文,然后再阅读更具体领域的专业论文


这篇介绍深度学习论文阅读路线图的回答,可能还对你有用:

参考资料:
quora.com/What-are-some
reddit.com/r/MachineLea




  

相关话题

  目前的人工智能离可以自己给自己写代码编程还有多远? 
  如何评价陈天奇团队新开源的TVM? 
  三维重建怎么入门? 
  有哪些解决完之后让你拍案叫绝的算法问题? 
  如何看待Kaggle最新比赛Zillow禁止中国居民参加第二轮? 
  使用强化学习解决实际问题时常常避不开环境模拟或者使用离线强化学习算法,两者分别有什么优缺点? 
  怎么看待小富靠勤 ,大富靠命这句话? 
  深度学习领域有哪些瓶颈? 
  请问机器学习中的预测与决策的区别是什么,他们的界限在哪里呢? 
  计算机视觉和自然语言处理,哪个更具有发展前景呢,还是各有千秋呢? 

前一个讨论
美国数学教育制度对于培养职业数学家来说,是否是失败的?
下一个讨论
新发布的iPad 2018 9.7寸跟iPad Pro 10.5的优劣?





© 2025-01-18 - tinynew.org. All Rights Reserved.
© 2025-01-18 - tinynew.org. 保留所有权利