百科问答小站 logo
百科问答小站 font logo



如何比较Keras, TensorLayer, TFLearn ? 第1页

  

user avatar   yao-dong-27 网友的相关建议: 
      

这三个库主要比的是API设计水平,不得不说原始的 Tensorflow API的确反人类,我承认它的完善、表达能力强,性能好,但是接口设计对人类非常不友好。

这就给了做高层抽象API封装的生存空间,Keras Tensorlayer TFLearn 是目前比较成熟的几个库。

做个比喻,Tensorflow就像当年的 Win32 API,功能强大但是难以使用,随便做点小事情就要写很多代码,我清楚记得我写个显示空白窗口的程序就要40来行。

Tensorlayer比较像 WTL,把一些繁琐的代码封装成更容易使用的接口,但是仍然保留了对底层API调用的能力,抽象的层次不高,仍然可以看到底层的 数据结构和网络结构。比如 可以看到 Session和Placeholder等。

TFLearn比较像 MFC,抽象的层次更高,创造了自己的一套子语法,代码可读性更好,屏蔽了底层难以理解的东西。

Keras比较像 Qt,很高的抽象层次,甚至跨越了多个深度学习框架,完全看不到底层的细节了,甚至某些情况需要触碰底层的对象和数据反而非常麻烦。


不同的抽象层次带来不同的学习难度,适应不同的需求。

基本建议:

如果只是想玩玩深度学习,想快速上手 -- Keras

如果工作中需要解决内部问题,想快速见效果 -- TFLearn 或者 Tensorlayer

如果正式发布的产品和业务,自己设计网络模型,需要持续开发和维护 -- Tensorlayer

以上只是个人建议,具体情况因人而异。


user avatar   bigmoyan 网友的相关建议: 
      

景甜:抱歉,是我选的他。




  

相关话题

  NLP文本分类的本质是不是其实是找相似,对于要分类的句子,在训练集里找最相似的句子? 
  如何评价deepmind最新在nature上发表的论文《在人工网络中用网格样表征进行基于向量的导航》? 
  为何感觉“知识蒸馏”这几年没有什么成果? 
  GAN生成的数据没有标签怎么用来训练分类模型? 
  使用强化学习解决实际问题时常常避不开环境模拟或者使用离线强化学习算法,两者分别有什么优缺点? 
  计算机视觉是否已经进入瓶颈期? 
  奇异值分解(SVD)有哪些很厉害的应用? 
  深度学习有哪些好玩的案例? 
  土木和机器学习/深度学习/算法的交叉岗位在哪里找呀? 在哪找都找不到招聘公司? 
  基于计算机视觉从一张图片重建人体的三维网格,能否获取腰围、胸围、臂长、腿长等数据? 

前一个讨论
有哪些看起来很逼真,但其实是假的照片、人或事?
下一个讨论
用卫星地图环顾全球,为什么只有中国的海岸线污了那么大一片?





© 2024-12-18 - tinynew.org. All Rights Reserved.
© 2024-12-18 - tinynew.org. 保留所有权利