百科问答小站 logo
百科问答小站 font logo



DL/ML 模型如何部署到生产环境中? 第1页

  

user avatar   professor-ho 网友的相关建议: 
      

是时候给出我的文章了,如果你使用的神经网络框架是TensorFlow,那么TensorFlow Serving是你非常好的选择。目前本人用的是TensorFlow Serving + Docker + Tornado的组合,Docker非常易于部署任何模型,而Tornado负责处理高并发请求。

详细教程请移步查看我的文章:

如果你觉得有用,请先点赞再收藏。

另外,如果你使用的是其它神经网络框架,例如caffe、pytorch,我会推荐Nvidia的TensorRT Inference Server,它支持所有模型的部署,包括TF系、ONNX系、mxnet等等,TRT会先对你的网络进行融合,合并可以同步计算的层,然后量化计算子图,让你的模型以float16、int8等精度进行推理,大大加速推理速度,而你只需要增加几行简单的代码就能实现。而且TRT Inference Server能够处理负载均衡,让你的GPU保持高利用率。

日后有机会再写一篇TRT Inference Server的教程,这里先挖个坑,大家可以保持关注。

模型部署的方式越来越简单,许多大团队已经帮在帮我们简化部署的流程,以及提高部署的性能,我们只需要学会怎么用起来,剩下的就是写一些业务逻辑了,这为我们省下了大量的时间,专注于算法的研究。


--------19.1.27更新--------

现在又写了篇Mxnet Model Server的部署教程,大家可以参考学习:




  

相关话题

  如何评价 Kaiming 团队新作 Masked Autoencoders (MAE)? 
  对于技术岗位而言,开发岗累还是算法岗累呢? 
  从今年校招来看,机器学习等算法岗位应届生超多,竞争激烈,未来 3-5 年机器学习相关就业会达到饱和吗? 
  时间序列和回归分析有什么本质区别? 
  如何评价余凯在朋友圈发表呼吁大家用 caffe、mxnet 等框架,避免使用 TensorFlow? 
  加州大学伯克利分校为何能连续孵化出 Mesos,Spark,Alluxio,Ray 等重量级开源项目? 
  李航的统计学习方法,吴恩达的视频,关于机器学习的东西都看不懂是怎么回事? 
  深度学习有哪些好玩的案例? 
  使用强化学习解决实际问题时常常避不开环境模拟或者使用离线强化学习算法,两者分别有什么优缺点? 
  如何评价Kaiming He团队的MoCo v3? 

前一个讨论
SQLite 的读写效率很高,有哪些使用其他数据库的理由?
下一个讨论
如何看待《工作细胞 第一季》将在2021年2月13日于CCTV-6播出?





© 2025-01-18 - tinynew.org. All Rights Reserved.
© 2025-01-18 - tinynew.org. 保留所有权利