百科问答小站 logo
百科问答小站 font logo



计算商品embedding然后平均得到用户embedding,会不会存在这种问题? 第1页

  

user avatar   huo-hua-de-41 网友的相关建议: 
      

问题的本质在于维数诅咒curse of dimensionality,你需要的是一个对于高维向量的正确图景。你想象中的情况是左边2维或者3维的情况,这个时候猫猫狗狗的确是混在一起的,取平均后会有“四不像”的情况。但实际上,embedding都是几百维,是高维向量。每个样本猫或者狗都存在于一个个尖尖上,几个尖尖取平均后,只会依然离这几个尖尖最近,能够保证“四都像”。


user avatar   chenran 网友的相关建议: 
      

因为在高维空间中的平均,会依然离原来的点特别近,离其他的点特别远?

我们假设这样一个情形,在空间中取4个点{A1..A4},取平均得A‘可以看作 User Embedding,再在空间中随机生成100个点{B1..B100}。我们计算A' 最近的点是在 {A1..A4} 中还是在 {B1..B100} 中。

在二维空间中特别明显,A‘ 大概率离B点集更近一些。我们跑个模拟,看看随着维度的变高,有什么变化。

可以看到,在低维度的时候,取平均会更像其他的 Item,但随着 Embedding 维度的增加,User Embedding 最近的点几乎全是A集中的点,依然在那几个 Item Embedding 的附近,而离其他的 Embedding 更远一些。

所以并不会是“四不像”,而是“四都像”。高维度和低维度上的直觉有时候很不同罢。




  

相关话题

  用生成模型做数据增强data augmentation时,如何从合成数据中筛选出质量较好的样本? 
  2019年CVPR有哪些糟糕的论文? 
  机器学习中使用正则化来防止过拟合是什么原理? 
  为什么现在的CNN模型都是在GoogleNet、VGGNet或者AlexNet上调整的? 
  机器学习系统MLSys中有哪些比较有前途的研究方向? 
  学习机器学习有哪些好工具推荐? 
  能识别情绪的机器人可以算做有情感的机器人吗? 
  ICML2020有哪些值得关注的工作? 
  当前深度学习理论基础薄弱是否意味着我们应该放弃深度学习应用(计算机视觉、自然语言处理)? 
  为什么ViT里的image patch要设计成不重叠? 

前一个讨论
机械工程专业为什么要学 C 语言?
下一个讨论
如何自学数学以达到数学博士的水平?





© 2024-11-09 - tinynew.org. All Rights Reserved.
© 2024-11-09 - tinynew.org. 保留所有权利