百科问答小站 logo
百科问答小站 font logo



为什么我会觉得证明极限的过程完全是在套公式? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

谢邀。


牛顿的时候虽然已有了微积分,可是极限的描述还是很感性: 无穷小量到底是不是0?是越来越接近0的一种变量?

越来越接近”这种描述真的很土鳖,也就只能给小学生讲讲。


当时的人们,还没有函数的概念,没有极限的概念。就像是题主一样,当时的好多人觉得,数学不该是这样啊,太不严谨了。就连马克思都质疑微积分难以自圆其说(其实当时已经有极限的概念了,但是马不知道)。不光是微积分的基础理论为人诟病,就连微积分的发展也似乎有点迟滞,眼看微积分之大厦将倾!

后来有了Weierstrass大神的δ-ε语言,微积分的大厦不再是空中楼阁。这可真不容易,花了好几代数学家的生命,才得到如此毫无破绽的描述,并且成为分析学最原始且最具有活力的研究起点。由该定义引伸出的拓扑学的连续性定义,是非常具有一般性的,适用于各种变态空间,可见Weierstrass大神的真知灼见——不仅可以解燃眉之急,还能为后世学者指引道路;下可以牢固基础,上可以发展新理论,这就是严格化定义的力量!

现在题主觉得很多题十分显然,套定义太冗余,的确如此,但它的用意是让我们熟记δ-ε语言,并且以后能灵活运用。到后面进阶学习,或是做许多证明题时,就会发现,δ-ε无处不在,并且最难的极限证明就是构造δ-ε




  

相关话题

  如何看待哈工大校友刘汉清如今靠400元低保度日? 
  数列{tan n/n}有界吗? 
  科学的本质是物理还是数学? 
  非常神奇的数学结论有哪些? 
  如何证明若a1≠a2≠…≠an,则m×n范德蒙矩阵V=aj^(i-1)有最大秩min(m,n)? 
  数学领域做不同分支的是否隔行如隔山? 
  这道极限题怎么做?会不会是题目有问题吗? 
  为什么我们可以用平面取一点来证明概率为零事件能发生? 
  为什么俄罗斯的文学、数学、音乐都那么强,诞生了好多大牛? 
  是不是不能这样做,为什么? 

前一个讨论
有没有大神回答一下,级数中,比值判别法中的ρ是指什么?
下一个讨论
如何证明函数单调有界判别法?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利