百科问答小站 logo
百科问答小站 font logo



为什么我会觉得证明极限的过程完全是在套公式? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

谢邀。


牛顿的时候虽然已有了微积分,可是极限的描述还是很感性: 无穷小量到底是不是0?是越来越接近0的一种变量?

越来越接近”这种描述真的很土鳖,也就只能给小学生讲讲。


当时的人们,还没有函数的概念,没有极限的概念。就像是题主一样,当时的好多人觉得,数学不该是这样啊,太不严谨了。就连马克思都质疑微积分难以自圆其说(其实当时已经有极限的概念了,但是马不知道)。不光是微积分的基础理论为人诟病,就连微积分的发展也似乎有点迟滞,眼看微积分之大厦将倾!

后来有了Weierstrass大神的δ-ε语言,微积分的大厦不再是空中楼阁。这可真不容易,花了好几代数学家的生命,才得到如此毫无破绽的描述,并且成为分析学最原始且最具有活力的研究起点。由该定义引伸出的拓扑学的连续性定义,是非常具有一般性的,适用于各种变态空间,可见Weierstrass大神的真知灼见——不仅可以解燃眉之急,还能为后世学者指引道路;下可以牢固基础,上可以发展新理论,这就是严格化定义的力量!

现在题主觉得很多题十分显然,套定义太冗余,的确如此,但它的用意是让我们熟记δ-ε语言,并且以后能灵活运用。到后面进阶学习,或是做许多证明题时,就会发现,δ-ε无处不在,并且最难的极限证明就是构造δ-ε




  

相关话题

  为什么 Mathematica 不能显示积分过程,即使它能算出最终结果? 
  张益唐九几年在美国过得那么苦逼为何不选择回国拿当时高达几百块RMB的月薪,回国没有更好的研究条件吗? 
  排队枪毙时代,为什么要求不能自由射击而要集体放枪?从概率的角度来讲,效果应该是一样的吧? 
  有哪些有趣而著名的悖论? 
  这题怎么写?急!? 
  求问数学公式推导? 
  这个极限正确答案应该是e的1/3次方,这样计算的结果却是e的-1/3次方,请问有什么问题吗? 
  什么叫「具有扎实的数学基础」? 
  请问数学上有哪些令人赞叹的,简洁的名言或者结论? 
  数学 物理 化学三者在本质上的区别是什么? 

前一个讨论
有没有大神回答一下,级数中,比值判别法中的ρ是指什么?
下一个讨论
如何证明函数单调有界判别法?





© 2025-01-18 - tinynew.org. All Rights Reserved.
© 2025-01-18 - tinynew.org. 保留所有权利