百科问答小站 logo
百科问答小站 font logo



为什么我会觉得证明极限的过程完全是在套公式? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

谢邀。


牛顿的时候虽然已有了微积分,可是极限的描述还是很感性: 无穷小量到底是不是0?是越来越接近0的一种变量?

越来越接近”这种描述真的很土鳖,也就只能给小学生讲讲。


当时的人们,还没有函数的概念,没有极限的概念。就像是题主一样,当时的好多人觉得,数学不该是这样啊,太不严谨了。就连马克思都质疑微积分难以自圆其说(其实当时已经有极限的概念了,但是马不知道)。不光是微积分的基础理论为人诟病,就连微积分的发展也似乎有点迟滞,眼看微积分之大厦将倾!

后来有了Weierstrass大神的δ-ε语言,微积分的大厦不再是空中楼阁。这可真不容易,花了好几代数学家的生命,才得到如此毫无破绽的描述,并且成为分析学最原始且最具有活力的研究起点。由该定义引伸出的拓扑学的连续性定义,是非常具有一般性的,适用于各种变态空间,可见Weierstrass大神的真知灼见——不仅可以解燃眉之急,还能为后世学者指引道路;下可以牢固基础,上可以发展新理论,这就是严格化定义的力量!

现在题主觉得很多题十分显然,套定义太冗余,的确如此,但它的用意是让我们熟记δ-ε语言,并且以后能灵活运用。到后面进阶学习,或是做许多证明题时,就会发现,δ-ε无处不在,并且最难的极限证明就是构造δ-ε




  

相关话题

  请问这个不等式(微积分怎么证明? 
  高次多项式不等式中「奇穿偶不穿」的原理是什么?求讲解,推导,数学证明。? 
  我国数学教材中的「勾股定理」是否应该改成「毕达哥拉斯定理(Pythagoras theorem)」? 
  假设,宇宙万物起源于“道”(现有理论中称之为奇点)那么这个“道”是否产生一最基本的规律或为一规律? 
  根号素数的有限组合是否一定是无理数? 
  给 n 个数的加法加括号的方法有多少种? 
  学习高中数学真的有用吗? 
  求教两道极限题目有哪些方法? 
  是否存在一个世界,这个世界没有任何关于物理化学甚至数学方面的性质,只是一个单纯的世界? 
  为什么圆周率 π 在各种物理数学公式里面经常出现? 

前一个讨论
有没有大神回答一下,级数中,比值判别法中的ρ是指什么?
下一个讨论
如何证明函数单调有界判别法?





© 2025-04-26 - tinynew.org. All Rights Reserved.
© 2025-04-26 - tinynew.org. 保留所有权利