百科问答小站 logo
百科问答小站 font logo



何恺明目前的学术成果是否够得上计算机视觉领域历史第一人? 第1页

  

user avatar   chen-jia-yu-65-36 网友的相关建议: 
      

如果说深度学习三巨头Hinton、LeCun、Bengio是T0级别,那么何恺明毫无疑问T1级别。

荣誉

别人的荣誉都是在某某大厂工作,拿过什么大奖,而何恺明的荣誉是best,best,best ......,裂开了

研究兴趣

据我观察,何恺明的研究兴趣大致分成这么几个阶段:

传统视觉时代:Haze Removal(3篇)、Image Completion(2篇)、Image Warping(3篇)、Binary Encoding(6篇)

深度学习时代:Neural Architecture(11篇)、Object Detection(7篇)、Semantic Segmentation(11篇)、Video Understanding(4篇)、Self-Supervised(8篇)

代表作

2009 CVPR best paper Single Image Haze Removal Using Dark Channel Prior

利用实验观察到的暗通道先验,巧妙的构造了图像去雾算法。现在主流的图像去雾算法还是在Dark Channel Prior的基础上做的改进。

2016 CVPR best paper Deep Residual Learning for Image Recognition

通过残差连接,可以训练非常深的卷积神经网络。不管是之前的CNN,还是最近的ViT、MLP-Mixer架构,仍然摆脱不了残差连接的影响。

2017 ICCV best paper Mask R-CNN

在Faster R-CNN的基础上,增加一个实例分割分支,并且将RoI Pooling替换成了RoI Align,使得实例分割精度大幅度提升。虽然最新的实例分割算法层出不穷,但是精度上依然难以超越Mask R-CNN。

2017 ICCV best student paper Focal Loss for Dense Object Detection

构建了一个One-Stage检测器RetinaNet,同时提出Focal Loss来处理One-Stage的类别不均衡问题,在目标检测任务上首次One-Stage检测器的速度和精度都优于Two-Stage检测器。近些年的One-Stage检测器(如FCOS、ATSS),仍然以RetinaNet为基础进行改进。

2020 CVPR Best Paper Nominee Momentum Contrast for Unsupervised Visual Representation Learning

19年末,NLP领域的Transformer进一步应用于Unsupervised representation learning,产生后来影响深远的BERT和GPT系列模型,反观CV领域,ImageNet刷到饱和,似乎遇到了怎么也跨不过的屏障。就在CV领域停滞不前的时候,Kaiming He带着MoCo横空出世,横扫了包括PASCAL VOC和COCO在内的7大数据集,至此,CV拉开了Self-Supervised研究新篇章。

近期工作

62-Exploring Simple Siamese Representation Learning

65-Masked Autoencoders Are Scalable Vision Learners

时间线

1-Single Image Haze Removal Using Dark Channel Prior

kaiming he通过大量无雾图片统计发现了dark channel prior—在无雾图的局部区域中,3个通道的最小亮度值非常小接近于0(不包括天空区域)。

dark channel prior通过暗通道先验对haze imaging model进行化简,近似计算得到粗糙的transmission,然后将haze imaging model和matting model联系起来,巧妙的将图像去雾问题转化为抠图问题,得到refined transmission,精彩!

3-Guided Image Filtering

Guided image filtering是结合两幅图片信息的过程,一个filtering input image(表示为p)和一个guide image(表示为I)生成一个filtering output image(表示为q)。p决定了q的颜色,亮度,和色调,I决定了q的边缘。对于图像去雾来说,transmission就是p,雾图就是I,refined transmission就是q。

guided filter则通过公式转换,和滤波联系起来,提出新颖的guided filter,巧妙的避开了linear system的计算过程,极大加快了transmission优化的速度。

37-Focal Loss for Dense Object Detection

构建了一个One-Stage检测器RetinaNet,同时提出Focal Loss来处理One-Stage的类别不均衡问题,在目标检测任务上首次One-Stage检测器的速度和精度都优于Two-Stage检测器。近些年的One-Stage检测器(如FCOS、ATSS),仍然以RetinaNet为基础进行改进。

38-Mask R-CNN

在Faster R-CNN的基础上,增加一个实例分割分支,并且将RoI Pooling替换成了RoI Align,使得实例分割精度大幅度提升。虽然最新的实例分割算法层出不穷,但是精度上依然难以超越Mask R-CNN。

62-Exploring Simple Siamese Representation Learning

SimSiam的理论解释意味着带stop-gradient的孪生网络表征学习都可以用EM算法解释。stop-gradient起到至关重要的作用,并且需要一个预测期望E的方法进行辅助使用。但是SimSiam仍然无法解释模型坍塌现象,SimSiam以及它的变体不坍塌现象仍然是一个经验性的观察,模型坍塌仍然需要后续的工作进一步讨论。

63-A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning

指出时空的Self-Supervised采样同一个视频的positive pair时间跨度越长效果越好,momentum encoder比优化目标重要,训练时间、backbone、数据增强和精选数据对于得到更好性能至关重要。

64-An Empirical Study of Training Self-Supervised Vision Transformers

MoCov1通过dictionary as a queue和momentum encoder和shuffle BN三个巧妙设计,使得能够不断增加K的数量,将Self-Supervised的威力发挥的淋漓尽致。MoCov2在MoCov1的基础上,增加了SimCLR实验成功的tricks,然后反超SimCLR重新成为当时的SOTA,FAIR和Google Research争锋相对之作,颇有华山论剑的意思。MoCov3通过实验探究洞察到了Self-Supervised+Transformer存在的问题,并且使用简单的方法缓解了这个问题,这给以后的研究者探索Self-Supervised+Transformer提供了很好的启示。

65-Masked Autoencoders Are Scalable Vision Learners

MAE设计了一个encoder-decoder预训练框架,encoder只送入image token,decoder同时送入image token和mask token,对patch序列进行重建,最后还原成图片。相比于BEiT,省去了繁琐的训练tokenizer的过程,同时对image token和mask token进行解耦,特征提取和图像重建进行解耦,encoder只负责image token的特征提取,decoder专注于图像重建,这种设计直接导致了训练速度大幅度提升,同时提升精度,真称得上MAE文章中所说的win-win scenario了。

kaiming科研嗅觉顶级,每次都能精准的踩在最关键的问题上,提出的方法简洁明了,同时又蕴含着深刻的思考,文章赏心悦目,实验详尽扎实,工作质量说明一切。

慢慢更新

欢迎关注 Smarter ,构建CV世界观

欢迎加入Smarter交流群,添加微信「cjy094617」,备注「学校-方向」即可


user avatar   lqfarmer 网友的相关建议: 
      

首先这是Fed一月 memo

先说结论:

FOMC 维持利率在 0-0.25% 不变。且确定 3 月完全停止 QE,同时 3 月加息也是箭在弦上,基本会后声明皆符合市场预期,没有太多的意外。

Powell 记者会确实是偏一点点的小鹰派,但我也认为,Powell 的说法不至于拉升市场加息预期至 5次 、并拉升缩表预期至上半年,反而比较像是在强化加息 4 次之预期。

另外我个人觉得,一些中文媒体似乎误读了Powell 记者会的部分片段,下面 Allen 再进一步说明。


1. 3 月加息停止 QE 早已定价

本次会议 Fed 再次确认 3 月将准备第一次加息,并同时停止 QE。

Fed 也再次重申,货币政策是要支持美国经济达到充分就业、与通膨长期均值维持 2.0% 的两大目标。

这部分我想市场早已定价,这裡完全不会是问题,所以我们不讨论太多。


2.未来加息在每次会议都可能发生 (?)

Powell 的原文说法是:Won't Rule Out Hike Every Meeting.

但我有看到部分中文媒体写:不排除每次会议都加息的可能性。

上述我想或许是误读了 (还是其实是我自己误会中文的意思 ?)

我的理解是:Powell 是说加息在未来每场会议都可能发生,指的是“不会在特定月份才加息”,不是说每场都要加息。

Powell 说得很合理,经济本来就是动态的,加息本就不会侷限在什麽月份才启动,端看当时的经济状况而定。

我认为Powell 上述说法,并未延展今年加息预期至五次或更多,若有这种想法,那绝对是误读了。


3.更大规模的缩表?

Powell 在记者会上提到,Fed 需要更大规模的缩表,但请大家不要恐慌,因为我又觉得部份中文媒体过度解读了。

我认为Powell 说到的“更大规模缩表”,在思维上指的是:

因为当前 Fed 资产负债表高达 8.9 万美元,这是新冠疫情爆发之前的两倍大,显然在绝对规模上是非常巨大的。

而上一轮 2017-2019 年 Fed 缩减资产负债表,是自 4.4 万亿美元缩到 3.7 万亿美元停止,缩表的幅度大概是 15.9%,共缩减了约 7000 亿美元。

确实每次缩表的经济背景绝对是不一样的,所以幅度也绝对不会相同,但我们随便抓,假设本轮缩表将缩减 10% 资产负债表规模,那麽这也要降低 8900 亿美元,规模当然很大。

但我认为,不需要过度恐慌在“更大规模缩表”这几个字上。更重要的,我认为是“Fed 缩表的速率是多少?”

我相信缩表没问题,缩表太快才是问题,因为缩表速度若太快,将直接影响的会是美债殖利率升速、以及殖利率曲线的斜率。

这点Powell 也非常清楚,Powell 在记者会上也不断强调,联准会内部尚未具体讨论到一切缩表的进度,要等到 3 月再说。


4.缩表比较可能落在下半年

Powell 在记者会上说明,希望在加息至少一次之后,再来开会讨论缩表的事情,且委员会至少将讨论一次,才会做最终拍板。

更重要的,Powell 希望缩表的进程是有秩序的、是可被预见的过程。

从上述Powell 丢出的时间表看,我个人认为缩表将落在 2022 下半年,最快可能是 6 月份,因为在 3 月加息后,Fed 才会来讨论缩表。

我个人相信 Fed 现在内部早已在讨论缩表,但委员会显然尚未准备好来与市场沟通缩表的前瞻指引。

而缩表这麽大的事情,我个人认为 Fed 需要起次跟市场沟通 2 次,并把缩表规划说得非常清楚之后,才会开始进行,所以比较合理的缩表时间,估计将会落在下半年。


5.最大风险:高通膨

Powell 在记者会上,大概提到了 800 万次的“高通膨压力”,并认为目前美国通膨风险仍在上升阶段,但预计 2022 通膨还是会回落。

Powell 说明,目前美国通膨居高不下,主要仍是供应链所致,白话来说就是供需仍然失衡,且供给侧 (Supply Side) 改善的速度是低于预期。

Powell 强调,目前美国高通膨持续存在,而美国经济要的是长期扩张,所以若要长期扩张,物价势必需要保持稳定。

这边开始进入正题了,我认为这是本次会议的最重要核心,是让我体感上,觉得 Fed 鹰派的地方。我认为 Fed 承认自己落后给菲利浦曲线 (Behind the curve),简单而言,Fed 这次的加息速度大幅落后给通膨。

由于 Fed 在 2021 年对于通膨的误判,先前 Fed 在 2021 年认为通膨在年底就可望自然回落,但也就是因为这件事没有发生,反而通膨还更为严重,所以目前才有使用加息来追赶通膨的压力。但当前宏观环境看,通膨的压力是来自于缺工、供应链紧俏等问题,再加上拜登政府的大力推行财政刺激在那边推波助澜~

所以这一次的通膨是来自于实体经济上的供需失衡问题,并不是金融市场过度投机、企业超额投资等问题,我认为 Fed 在这次的通膨问题上,能做得空间非常有限。

这裡将产生一个不确定性的较大风险,就是 Fed 只能靠货币紧缩去压通膨预期,但实体经济的根本性通膨问题,还是没有获得解决。变成最终 Fed 只能再用更剧烈的紧缩政策,去引导通膨预期走低后,尝试来压低实际通膨率,所以这裡将让 Fed 的紧缩路径,存在著较大不确定性。

比较好的处理方式,应该是直接去解决实体经济上的缺工和供应链/例如我之前提到的塞港问题,让实际通膨率自己走低、而不是靠 Fed 挤压通膨预期之后去引导。

谁可以去把坐在白宫裡疑似患有阿兹海默的白髮老头一巴掌打醒...还我特~


结论:我个人认为 Fed 今年将加息四次,不至于加息五次,而加息四次之预期,相信市场应该已经定价;至于缩表,相信市场尚未定价,估计将落在 2022 下半年,最快可能是 6 月。

如果 Fed 今年加息五次,我会感到非常意外,因为这意味著 Fed 很可能在 2023 年底、2024 年初,就因为美国经济放缓太快而需要降息,Fed 这波操作就会变得非常韭。

最后说说股市的想法目前 Nasdaq 已经插水一段时日,抑制通胀是当务之急,而股市所谓修正才多久已出现V转。对通胀而言意义不大,修正数月才可能有帮助~所以我之前一直描述为“恐慌”。因此对白髮老头而言,怎麽做才有利于中期选举就很清晰了。

最好还是坚持认为市场或已定价加息四次之预期,但缩表预期则是尚未定价的观点。

配置上美股我倾向持有科技权值股,一些 Megacap 的估值我认为合理、前景确定性较高,而这样也可以让你的收益贴著 QQQ 走。

考虑到一堆成长股腰斩,我也愿意加仓接刀成长股,但建议佔据投资组合的比例,或许不要超过 15%,如果选股功力不错,这裡就会开始让你的收益拉开与 QQQ 之类的差距。

最后,我相信人人都会想在市场下跌的环境裡接刀,接刀不是不行,但若接刀失败,斩缆我建议速度要快,我个人不考虑价投的话一次斩缆的比例都是 50% 以上。


user avatar    网友的相关建议: 
      

首先这是Fed一月 memo

先说结论:

FOMC 维持利率在 0-0.25% 不变。且确定 3 月完全停止 QE,同时 3 月加息也是箭在弦上,基本会后声明皆符合市场预期,没有太多的意外。

Powell 记者会确实是偏一点点的小鹰派,但我也认为,Powell 的说法不至于拉升市场加息预期至 5次 、并拉升缩表预期至上半年,反而比较像是在强化加息 4 次之预期。

另外我个人觉得,一些中文媒体似乎误读了Powell 记者会的部分片段,下面 Allen 再进一步说明。


1. 3 月加息停止 QE 早已定价

本次会议 Fed 再次确认 3 月将准备第一次加息,并同时停止 QE。

Fed 也再次重申,货币政策是要支持美国经济达到充分就业、与通膨长期均值维持 2.0% 的两大目标。

这部分我想市场早已定价,这裡完全不会是问题,所以我们不讨论太多。


2.未来加息在每次会议都可能发生 (?)

Powell 的原文说法是:Won't Rule Out Hike Every Meeting.

但我有看到部分中文媒体写:不排除每次会议都加息的可能性。

上述我想或许是误读了 (还是其实是我自己误会中文的意思 ?)

我的理解是:Powell 是说加息在未来每场会议都可能发生,指的是“不会在特定月份才加息”,不是说每场都要加息。

Powell 说得很合理,经济本来就是动态的,加息本就不会侷限在什麽月份才启动,端看当时的经济状况而定。

我认为Powell 上述说法,并未延展今年加息预期至五次或更多,若有这种想法,那绝对是误读了。


3.更大规模的缩表?

Powell 在记者会上提到,Fed 需要更大规模的缩表,但请大家不要恐慌,因为我又觉得部份中文媒体过度解读了。

我认为Powell 说到的“更大规模缩表”,在思维上指的是:

因为当前 Fed 资产负债表高达 8.9 万美元,这是新冠疫情爆发之前的两倍大,显然在绝对规模上是非常巨大的。

而上一轮 2017-2019 年 Fed 缩减资产负债表,是自 4.4 万亿美元缩到 3.7 万亿美元停止,缩表的幅度大概是 15.9%,共缩减了约 7000 亿美元。

确实每次缩表的经济背景绝对是不一样的,所以幅度也绝对不会相同,但我们随便抓,假设本轮缩表将缩减 10% 资产负债表规模,那麽这也要降低 8900 亿美元,规模当然很大。

但我认为,不需要过度恐慌在“更大规模缩表”这几个字上。更重要的,我认为是“Fed 缩表的速率是多少?”

我相信缩表没问题,缩表太快才是问题,因为缩表速度若太快,将直接影响的会是美债殖利率升速、以及殖利率曲线的斜率。

这点Powell 也非常清楚,Powell 在记者会上也不断强调,联准会内部尚未具体讨论到一切缩表的进度,要等到 3 月再说。


4.缩表比较可能落在下半年

Powell 在记者会上说明,希望在加息至少一次之后,再来开会讨论缩表的事情,且委员会至少将讨论一次,才会做最终拍板。

更重要的,Powell 希望缩表的进程是有秩序的、是可被预见的过程。

从上述Powell 丢出的时间表看,我个人认为缩表将落在 2022 下半年,最快可能是 6 月份,因为在 3 月加息后,Fed 才会来讨论缩表。

我个人相信 Fed 现在内部早已在讨论缩表,但委员会显然尚未准备好来与市场沟通缩表的前瞻指引。

而缩表这麽大的事情,我个人认为 Fed 需要起次跟市场沟通 2 次,并把缩表规划说得非常清楚之后,才会开始进行,所以比较合理的缩表时间,估计将会落在下半年。


5.最大风险:高通膨

Powell 在记者会上,大概提到了 800 万次的“高通膨压力”,并认为目前美国通膨风险仍在上升阶段,但预计 2022 通膨还是会回落。

Powell 说明,目前美国通膨居高不下,主要仍是供应链所致,白话来说就是供需仍然失衡,且供给侧 (Supply Side) 改善的速度是低于预期。

Powell 强调,目前美国高通膨持续存在,而美国经济要的是长期扩张,所以若要长期扩张,物价势必需要保持稳定。

这边开始进入正题了,我认为这是本次会议的最重要核心,是让我体感上,觉得 Fed 鹰派的地方。我认为 Fed 承认自己落后给菲利浦曲线 (Behind the curve),简单而言,Fed 这次的加息速度大幅落后给通膨。

由于 Fed 在 2021 年对于通膨的误判,先前 Fed 在 2021 年认为通膨在年底就可望自然回落,但也就是因为这件事没有发生,反而通膨还更为严重,所以目前才有使用加息来追赶通膨的压力。但当前宏观环境看,通膨的压力是来自于缺工、供应链紧俏等问题,再加上拜登政府的大力推行财政刺激在那边推波助澜~

所以这一次的通膨是来自于实体经济上的供需失衡问题,并不是金融市场过度投机、企业超额投资等问题,我认为 Fed 在这次的通膨问题上,能做得空间非常有限。

这裡将产生一个不确定性的较大风险,就是 Fed 只能靠货币紧缩去压通膨预期,但实体经济的根本性通膨问题,还是没有获得解决。变成最终 Fed 只能再用更剧烈的紧缩政策,去引导通膨预期走低后,尝试来压低实际通膨率,所以这裡将让 Fed 的紧缩路径,存在著较大不确定性。

比较好的处理方式,应该是直接去解决实体经济上的缺工和供应链/例如我之前提到的塞港问题,让实际通膨率自己走低、而不是靠 Fed 挤压通膨预期之后去引导。

谁可以去把坐在白宫裡疑似患有阿兹海默的白髮老头一巴掌打醒...还我特~


结论:我个人认为 Fed 今年将加息四次,不至于加息五次,而加息四次之预期,相信市场应该已经定价;至于缩表,相信市场尚未定价,估计将落在 2022 下半年,最快可能是 6 月。

如果 Fed 今年加息五次,我会感到非常意外,因为这意味著 Fed 很可能在 2023 年底、2024 年初,就因为美国经济放缓太快而需要降息,Fed 这波操作就会变得非常韭。

最后说说股市的想法目前 Nasdaq 已经插水一段时日,抑制通胀是当务之急,而股市所谓修正才多久已出现V转。对通胀而言意义不大,修正数月才可能有帮助~所以我之前一直描述为“恐慌”。因此对白髮老头而言,怎麽做才有利于中期选举就很清晰了。

最好还是坚持认为市场或已定价加息四次之预期,但缩表预期则是尚未定价的观点。

配置上美股我倾向持有科技权值股,一些 Megacap 的估值我认为合理、前景确定性较高,而这样也可以让你的收益贴著 QQQ 走。

考虑到一堆成长股腰斩,我也愿意加仓接刀成长股,但建议佔据投资组合的比例,或许不要超过 15%,如果选股功力不错,这裡就会开始让你的收益拉开与 QQQ 之类的差距。

最后,我相信人人都会想在市场下跌的环境裡接刀,接刀不是不行,但若接刀失败,斩缆我建议速度要快,我个人不考虑价投的话一次斩缆的比例都是 50% 以上。


user avatar   guosheng-hu 网友的相关建议: 
      

首先这是Fed一月 memo

先说结论:

FOMC 维持利率在 0-0.25% 不变。且确定 3 月完全停止 QE,同时 3 月加息也是箭在弦上,基本会后声明皆符合市场预期,没有太多的意外。

Powell 记者会确实是偏一点点的小鹰派,但我也认为,Powell 的说法不至于拉升市场加息预期至 5次 、并拉升缩表预期至上半年,反而比较像是在强化加息 4 次之预期。

另外我个人觉得,一些中文媒体似乎误读了Powell 记者会的部分片段,下面 Allen 再进一步说明。


1. 3 月加息停止 QE 早已定价

本次会议 Fed 再次确认 3 月将准备第一次加息,并同时停止 QE。

Fed 也再次重申,货币政策是要支持美国经济达到充分就业、与通膨长期均值维持 2.0% 的两大目标。

这部分我想市场早已定价,这裡完全不会是问题,所以我们不讨论太多。


2.未来加息在每次会议都可能发生 (?)

Powell 的原文说法是:Won't Rule Out Hike Every Meeting.

但我有看到部分中文媒体写:不排除每次会议都加息的可能性。

上述我想或许是误读了 (还是其实是我自己误会中文的意思 ?)

我的理解是:Powell 是说加息在未来每场会议都可能发生,指的是“不会在特定月份才加息”,不是说每场都要加息。

Powell 说得很合理,经济本来就是动态的,加息本就不会侷限在什麽月份才启动,端看当时的经济状况而定。

我认为Powell 上述说法,并未延展今年加息预期至五次或更多,若有这种想法,那绝对是误读了。


3.更大规模的缩表?

Powell 在记者会上提到,Fed 需要更大规模的缩表,但请大家不要恐慌,因为我又觉得部份中文媒体过度解读了。

我认为Powell 说到的“更大规模缩表”,在思维上指的是:

因为当前 Fed 资产负债表高达 8.9 万美元,这是新冠疫情爆发之前的两倍大,显然在绝对规模上是非常巨大的。

而上一轮 2017-2019 年 Fed 缩减资产负债表,是自 4.4 万亿美元缩到 3.7 万亿美元停止,缩表的幅度大概是 15.9%,共缩减了约 7000 亿美元。

确实每次缩表的经济背景绝对是不一样的,所以幅度也绝对不会相同,但我们随便抓,假设本轮缩表将缩减 10% 资产负债表规模,那麽这也要降低 8900 亿美元,规模当然很大。

但我认为,不需要过度恐慌在“更大规模缩表”这几个字上。更重要的,我认为是“Fed 缩表的速率是多少?”

我相信缩表没问题,缩表太快才是问题,因为缩表速度若太快,将直接影响的会是美债殖利率升速、以及殖利率曲线的斜率。

这点Powell 也非常清楚,Powell 在记者会上也不断强调,联准会内部尚未具体讨论到一切缩表的进度,要等到 3 月再说。


4.缩表比较可能落在下半年

Powell 在记者会上说明,希望在加息至少一次之后,再来开会讨论缩表的事情,且委员会至少将讨论一次,才会做最终拍板。

更重要的,Powell 希望缩表的进程是有秩序的、是可被预见的过程。

从上述Powell 丢出的时间表看,我个人认为缩表将落在 2022 下半年,最快可能是 6 月份,因为在 3 月加息后,Fed 才会来讨论缩表。

我个人相信 Fed 现在内部早已在讨论缩表,但委员会显然尚未准备好来与市场沟通缩表的前瞻指引。

而缩表这麽大的事情,我个人认为 Fed 需要起次跟市场沟通 2 次,并把缩表规划说得非常清楚之后,才会开始进行,所以比较合理的缩表时间,估计将会落在下半年。


5.最大风险:高通膨

Powell 在记者会上,大概提到了 800 万次的“高通膨压力”,并认为目前美国通膨风险仍在上升阶段,但预计 2022 通膨还是会回落。

Powell 说明,目前美国通膨居高不下,主要仍是供应链所致,白话来说就是供需仍然失衡,且供给侧 (Supply Side) 改善的速度是低于预期。

Powell 强调,目前美国高通膨持续存在,而美国经济要的是长期扩张,所以若要长期扩张,物价势必需要保持稳定。

这边开始进入正题了,我认为这是本次会议的最重要核心,是让我体感上,觉得 Fed 鹰派的地方。我认为 Fed 承认自己落后给菲利浦曲线 (Behind the curve),简单而言,Fed 这次的加息速度大幅落后给通膨。

由于 Fed 在 2021 年对于通膨的误判,先前 Fed 在 2021 年认为通膨在年底就可望自然回落,但也就是因为这件事没有发生,反而通膨还更为严重,所以目前才有使用加息来追赶通膨的压力。但当前宏观环境看,通膨的压力是来自于缺工、供应链紧俏等问题,再加上拜登政府的大力推行财政刺激在那边推波助澜~

所以这一次的通膨是来自于实体经济上的供需失衡问题,并不是金融市场过度投机、企业超额投资等问题,我认为 Fed 在这次的通膨问题上,能做得空间非常有限。

这裡将产生一个不确定性的较大风险,就是 Fed 只能靠货币紧缩去压通膨预期,但实体经济的根本性通膨问题,还是没有获得解决。变成最终 Fed 只能再用更剧烈的紧缩政策,去引导通膨预期走低后,尝试来压低实际通膨率,所以这裡将让 Fed 的紧缩路径,存在著较大不确定性。

比较好的处理方式,应该是直接去解决实体经济上的缺工和供应链/例如我之前提到的塞港问题,让实际通膨率自己走低、而不是靠 Fed 挤压通膨预期之后去引导。

谁可以去把坐在白宫裡疑似患有阿兹海默的白髮老头一巴掌打醒...还我特~


结论:我个人认为 Fed 今年将加息四次,不至于加息五次,而加息四次之预期,相信市场应该已经定价;至于缩表,相信市场尚未定价,估计将落在 2022 下半年,最快可能是 6 月。

如果 Fed 今年加息五次,我会感到非常意外,因为这意味著 Fed 很可能在 2023 年底、2024 年初,就因为美国经济放缓太快而需要降息,Fed 这波操作就会变得非常韭。

最后说说股市的想法目前 Nasdaq 已经插水一段时日,抑制通胀是当务之急,而股市所谓修正才多久已出现V转。对通胀而言意义不大,修正数月才可能有帮助~所以我之前一直描述为“恐慌”。因此对白髮老头而言,怎麽做才有利于中期选举就很清晰了。

最好还是坚持认为市场或已定价加息四次之预期,但缩表预期则是尚未定价的观点。

配置上美股我倾向持有科技权值股,一些 Megacap 的估值我认为合理、前景确定性较高,而这样也可以让你的收益贴著 QQQ 走。

考虑到一堆成长股腰斩,我也愿意加仓接刀成长股,但建议佔据投资组合的比例,或许不要超过 15%,如果选股功力不错,这裡就会开始让你的收益拉开与 QQQ 之类的差距。

最后,我相信人人都会想在市场下跌的环境裡接刀,接刀不是不行,但若接刀失败,斩缆我建议速度要快,我个人不考虑价投的话一次斩缆的比例都是 50% 以上。




  

相关话题

  如何看待重庆大学引进 25 岁博导冯磊,入职半年实现学院 ICML 顶会论文零的突破? 
  什么是受过科研训练(科班出身)? 
  如何判断两个Deep Learning 数据集的数据分布是否一致? 
  导师发了篇 SCI,未经我同意,将我列为一作。我如何撤销自己的名字,会一并撤销文章吗? 
  如何看待中科院合肥研究院 90 多名科研人员集体辞职? 
  计算机视觉中video understanding领域有什么研究方向和比较重要的成果? 
  身为女性科研工作者的你,看到两位女性包揽 2020 诺贝尔化学奖,有什么想说的吗? 
  如何开始一篇学术论文的写作? 
  如何评价 Kaiming 团队新作 Masked Autoencoders (MAE)? 
  目前哪些方面的科学研究成果是公开的? 

前一个讨论
据说刚离职的 iOS 负责人斯科特·福斯托(Scott Forstall)与苹果内部很多人不合,是否属实?有哪些引据?
下一个讨论
历史学是王牌专业的本科院校有哪些呢?





© 2025-03-31 - tinynew.org. All Rights Reserved.
© 2025-03-31 - tinynew.org. 保留所有权利