这就跟你学线性代数一样,比如说线性空间 中的向量都可以写成基的线性表示 ,然后我们可以把它写成“形式矩阵”一样: ,这就好看起来是点积的形式。你要说它有什么意义,其实也没什么意义,换一种写法而已。
这个问题没有任何区别,只不过是换了一个线性空间而已。这里的线性空间就是所谓的余切空间(切空间的对偶空间),然后 是这个余切空间的一组基(切空间的基的对偶基)。 是余切空间的元素,定义为 ,其中 是向量场。既然 是余切空间的元素,自然也可以写成基 的线性组合,其系数就是 ,也可以按照上述“形式矩阵”一样写成点积的形式,并且也当然可以推广到任意维度。(只不过在矢量微积分中,这个系数向量习惯性写成梯度的形式 ,要说有什么意义,和梯度联系起来也算一种意义吧)