百科问答小站 logo
百科问答小站 font logo



{mr+n! | m∈Z,n∈N}是否在R上稠密? 第1页

  

user avatar   zhang-han-yu-1 网友的相关建议: 
      

这个问题等价于: 这个数列的小数部分是否在 稠密?其中 也是一个无理数。答案是:有可能稠密,有可能不稠密。


不稠密的例子:

取 ,则 ,显然第一项是整数,而第二项满足 , 因此第二项就是 的小数部分。从而 的小数部分不是稠密的(唯一的聚点是 )。


稠密的例子(构造性证明):

设 是 中的全体有理数(可列),并假设 是既约分数。又设 是一列(待定的)严格递增的正整数,并定义

。固定一个正整数 ,注意到:

我们的想法是,让 是一个整数,让 是一个很小的数,以至于 。这样一来 的小数部分恰好是 , 变化时, 小数部分会跑遍每一个长度为 的有理区间,因此就稠密了!

为了让 是整数,只需要让 能够被每一个 ( )整除。因此只要取 就行。

为了让 足够小,注意到

,因此只要取 即可。

因此我们可以“递归地”选取 :只要取 ,且 ,这样构造出的 一定满足 的小数部分在 稠密!


求一个点赞...




  

相关话题

  数学上是否存在 X,使 X=X+1,且 X=X^X?即:是否存在一些情况,使方程中的 X 不能移项? 
  请问这个实变证明题怎么做? 
  请问如何求这两个数列的通项公式? 
  高中数学有哪些经验公式(二级公式)? 
  几乎处处收敛和依测度收敛的区别是什么呢? 
  灭霸使用了什么样的随机数生成方法来保证公平? 
  数学里的 e 为什么叫做自然底数?是不是自然界里什么东西恰好是 e? 
  一段文字的包含的信息量能不能衡量? 
  柯西黎曼条件为什么这么神奇? 
  数学的所有内容都是基于一些无法证明的公理和无法定义的概念(比如集合、直线),那么数学有没有可能是假的? 

前一个讨论
这个四极矩辐射场功率的积分怎么算出来的?
下一个讨论
如何证明Painlevé连续开拓原理?





© 2025-04-04 - tinynew.org. All Rights Reserved.
© 2025-04-04 - tinynew.org. 保留所有权利