利用公式 有:
从而
写成分量等式为(在球面上 )
前面的 和 是常量可以提出积分符号,其实我们要算的只有
和
从对称性看 都是旋转不变的,即对于任何 都应该有
因此它们应该只能由 构成,且是全对称的,因此:
我们对这两个张量进行缩并得
其中 是d维空间中的单位球面面积,同时还有:
由此可得
带入 得 ,从而:
在 是对称和无迹的条件下最终得到 。