百科问答小站 logo
百科问答小站 font logo



是否存在正整数a,b,c满足a²+b²=c²,当给定一个c值时,a,b有多种取值? 第1页

  

user avatar   caikai2021711 网友的相关建议: 
      

先说答案,可能。

最简单的方法,任意一组勾股数的倍数依然是勾股数,所以取两组勾股数,找到斜边的一个公倍数,其他数按比例调整就可以了。

例如(3,4,5)和(5,12,13)都是勾股数,分别扩大13倍和5倍,得到(39,52,65)和(25,60,65)就满足题意。


如果再进一步,要求两组勾股数都是本原勾股数(3个数没有大于1的公因子),也是可以做到的。

例如(36,77,85)和(13,84,85)


要搞清问题本质的话,先要列出本原勾股数的公式

其中 互质且为一奇一偶(不满足这个条件,也能得到勾股数,但一定不是本原勾股数)

证明可以由初等数论得到。

由此引出问题:怎样的c可以表示为两组不同的正整数的平方和?

先放一个结论:一个正整数能表示成两个正整数的平方和 这个正整数没有 型的质数因子

接下来要用到一点近世代数的理论:我们在整数环里加入元素 ,把得到的环记作

可以发现,整数环 里 和每个 型质数都是 中两个元素的乘积。

例如: ,

由此也容易看出, ,

要得到一个可以表示为两组不同的正整数的平方和的数,只需要取两个 型质数,其乘积就满足条件。

例如:

两组因子先拆开,分别和另一组因子相乘,便得到两个结果:

由此看出: ,再代入勾股数公式,便可以得到之前的两组本原勾股数。


我们还能找到更多本原勾股数,它们的斜边相同。

得到四组 的值:

得到四组斜边相同的本原勾股数:




  

相关话题

  matrix67去哪了? 
  《现代数学基础丛书》的封面图有什么数学背景? 
  在数学中,如果推翻了一条很基础的公理,那么会造成什么后果? 
  2021年高考数学难度如何?大题都有哪些解答思路?毕业之后的你还记得当年考试时的感受吗? 
  是否存在实数a>1使得数列sin(a^n)收敛? 
  如何评价穿越古代以数分为实数、虚数为开头写一本数学书? 
  今年复活节应该是3月28号,网上怎么都说是4月4号的呢?春分后第一月圆后的第一礼拜天,怎么是4月4号? 
  如何评价安徽大学 2019~2020 第一学期高等数学期末考试? 
  想请问平坦模、投射模这些的几何意义是什么,感觉atiyah这本书的定义有些干巴巴的.......? 
  什么样的数学题解答方式可以称为天秀? 

前一个讨论
将斐波那契数列从左到右、从上往下地依次填入一个n*n的矩阵中,当n≥3时,行列式是否一定为0?
下一个讨论
没有阿拉伯数字、拉丁字母和希腊字母,古代中国的数学是什么样的情况?





© 2025-04-24 - tinynew.org. All Rights Reserved.
© 2025-04-24 - tinynew.org. 保留所有权利