百科问答小站 logo
百科问答小站 font logo



凸分析和凸优化有什么推荐的教材吗? 第1页

  

user avatar   zhou-long-fei-91 网友的相关建议: 
      

泻药@王哲

一句话概括的话,凸分析主要研究凸集和凸函数的各种拓扑和分析性质,凸优化研究凸问题的最优性条件,设计求解算法并分析其迭代复杂度和计算复杂度。

好专著通常出自这两个领域的大师。记住这些凸分析和凸优化大师的名号:R. T. Rockafellar,Hiriart-Urruty,A Nemirovski ,Y. Nesterov, Yinyu Ye(叶荫宇)...更多的看 John von Neumann Theory Prize 历年获奖的大师名单。当然,也不能排除一些非top-class的数学家写作技巧很好,写的入门级教材图文结合,形象易懂(嗯,我这里指的主要是Y. Nesterov的论文很难读).....


入门级

S. Boyd and L. Vandenberghe. Convex Optimization [M]. Cambridge, 2004.

Güler O. Foundations of Optimization[M]. Springer New York, 2010.

Bahlak S, Gazalet J, Lefebvre J E, et al. Convex Optimization: Algorithms and Complexity[J]. Foundations & Trends® in Machine Learning, 2014, 8(3-4):231-357.


进阶版

A Nemirovski 个人主页上一系列的凸优化的slides

Ben-Tal A, Nemirovski A. Lectures on modern convex optimization[M]. SIAM, 2001.

Hiriart-Urruty J B, Lemaréchal C. Fundamentals of Convex Analysis[M]. Grundlehren Text Editions, 2004, 24(2):288-294.

R. T. Rockafellar. Convex Analysis[M]. Princeton, 1970.

Hiriart-Urruty J B, Lemaréchal C. Convex analysis and minimization algorithms[M]. Springer-Verlag, 1993.

Nesterov Y. Introductory Lectures on Convex Optimization[M]. Springer, 2014.


内点算法

Nesterov I E, Nemirovskiĭ A S. Interior Point Polynomial Algorithms in Convex Programming[M]. SIAM, 1994.

Ye Y. Interior point algorithms: theory and analysis[M]. John Wiley & Sons, Inc. 1997.

Wright S J. Primal-dual interior-point methods[M]. SIAM, 1997.

Roos C, Terlaky T, Vial J P. Interior Point Methods for Linear Optimization[M]. Springer, 2006.


如果不读博士做理论研究,好像基本上也不需要凸分析了;学术圈子里认真待个两三年,主动去了解这个领域,这些大师的名字会反复出现在论文和参考文献里,读读他们的专著就很有必要了...当然还有很多大牛,他们只写论文,没空写专著的,这时候就应该好好读论文了...




  

相关话题

  如何评价微软新出的自拍软件 Microsoft Selfie? 
  如何评价AWS的图神经网络框架DGL? 
  请解释下variational inference? 
  人工智能和自动控制能在一起擦出什么样的火花? 
  如何评价MXNet发布的1.0版本? 
  机器学习算法进行分类时,样本极度不平衡,评估模型要看哪些指标? 
  如何评价余凯创立的horizon robotics? 
  迁移学习与fine-tuning有什么区别? 
  如何看待鄂维南院士等发起的机器学习联合研讨计划(c2sml.cn)? 
  人类大脑的聪慧程度以 IQ 为标准,那么人工智能的水平用什么指标来衡量呢? 

前一个讨论
《仙剑奇侠传》系列游戏中有哪些细思极恐的细节?
下一个讨论
没有基的线性空间,是否可以构造,如何构造?





© 2025-02-21 - tinynew.org. All Rights Reserved.
© 2025-02-21 - tinynew.org. 保留所有权利