百科问答小站 logo
百科问答小站 font logo



有界可测集测度一定有限吗,无界可测集合测度一定无限吗?反之如何? 第1页

  

user avatar   lljpcz 网友的相关建议: 
      

如果题主考虑的测度是R上的勒贝格测度,考虑的拓扑是欧式拓扑。那这两个问题的解答都是trivial的。

利用有界区间的测度有限性和测度的单调性就可以解决第一问。

考虑整数集,立即得到第二问的反例。




  

相关话题

  我想证明自然数有穷可行吗? 
  为什么,概率论与测度论的分水岭是引入条件概率与独立性这两个概念? 
  如何让一个 5 岁小孩听懂什么是选择公理? 
  为什么测度论要建立在σ-代数上? 
  站在一个无穷大的围棋/五子棋盘上的任意格点上,能够看到的格点都放上黑棋,黑棋占格点比例多少? 
  为什么度量空间中聚点等同于极限点? 
  是否存在不可数个实数,其中任意有限多个在有理数上线性无关? 
  为什么,概率论与测度论的分水岭是引入条件概率与独立性这两个概念? 
  如何证明(0,1)不是可数集? 
  所有正方形的数量与所有长方形的数量相等吗? 

前一个讨论
全体质数的倒数和是发散的还是收敛的?如果收敛,收敛到多少?(多重问题预警)?
下一个讨论
哪些摇滚乐队才能配得上最伟大的称号?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利