百科问答小站 logo
百科问答小站 font logo



视觉Transformer如何优雅地避开位置编码? 第1页

  

user avatar   xiaohuzc 网友的相关建议: 
      

self-attention本身是对tokens的顺序是不敏感的,所以如果没有位置编码,那么transformer就只能依靠patches之间的纯语义来建模,这就相当于模型自己要学会“拼图”,或者类似一个“词袋模型”。从ViT的实验看,去掉position embedding后,性能会下降3个点以上,对结果还是影响比较大的。另外图像任务比如分割和检测大部分都是可变输入的,固定的PE对此并不友好,需要finetune。

目前的研究如CPVT和CvT可以在transformer引入卷积来隐式地编码位置信息,这就避免了直接使用PE,从结果上看,效果也和采用PE类似。

另外MoCo v3中也提到了PE的问题,发现去掉PE,对ViT进行无监督训练,性能下降只有不到2%。He神更倾向认为就算加了PE,可能模型也没有充分利用好位置信息。这个问题还需要进一步研究。


我个人认为文本和图像还是差异比较大的,图像毕竟属于一个高维连续空间。PE可能对文本建模影响比较大,但是对图像可能影响没那么大。ViT模型完全只依靠一堆无序的patches就能够学习得足够好。




  

相关话题

  有什么深度学习数学基础书推荐? 
  学生网络用知识蒸馏损失去逼近教师网络,如何提高学生网络的准确率? 
  BERT模型可以使用无监督的方法做文本相似度任务吗? 
  深度学习底层开发对数学有哪些要求? 
  多模态方面,有哪些牛组值得我们follow他们的工作? 
  为什么身边的人都劝退人工智能,他真的有这么不堪吗? 
  如何看待NLP领域最近比较火的prompt,能否借鉴到CV领域? 
  什么是迁移学习 (Transfer Learning)?这个领域历史发展前景如何? 
  翻译设备不断进化,很快会进入民用领域且越来越好用。那么现在一两岁的小孩,是否早教已没必要选英语了? 
  scikit-learn, tensorflow, pytorch真的只需要查下API,不需要学吗? 

前一个讨论
你们当初是因为什么选择生化环材专业的?
下一个讨论
本科化学的大佬们可以晒一下现在在做的工作吗?





© 2025-06-15 - tinynew.org. All Rights Reserved.
© 2025-06-15 - tinynew.org. 保留所有权利