百科问答小站 logo
百科问答小站 font logo



是否存在实数a>1使得数列sin(a^n)收敛? 第1页

  

user avatar   ma-zhi-gua 网友的相关建议: 
      

不存在.

首先, 广为人知的结论是 不存在, 但由海涅定理我们知道, 函数极限不存在并不意味着数列极限不存在. 接下来, 我们先考虑一个简单的情况, 先证明 不存在.

用反证法, 假设该数列极限存在令为 .

若 , 注意到 , 从而有 , 由余弦函数的性质, 对充分大的 , , 其中 , 由此可得 , 这是不可能的, 矛盾;

若 , 由 可得, , 与之前讨论类似, 可得矛盾.

至此, 我们完成了 不存在的证明.

其次, 我们发现上述的论证过程严格依赖于三角函数的一些性质, 用的是反证法分类讨论, 那么这种论证过程是否可以进行推广呢. 我们再考虑一个更复杂一些的特殊情形, 考察 是否存在. 答案是不存在, 下面陈述证明步骤, 仍是反证法.

假设该数列极限存在令为 .

若 , 从而对充分大的 , ,

其中 , 从而当 充分大时,有 ,可得 , 又由于 , 可得 , 矛盾.

若 由四倍角公式,我们有 ,

从而 亦收敛, 由此对充分大的 ,

其中 , 从而 ,

对于充分大的 ,上述表明 , 且对应地 . 当 时, 我们有 , 注意到 , 从而 , 此意味着 , 矛盾;

当 时,可以类似导出矛盾.

至此, 我们证明了 不存在.

最后, 我们再来审视原问题, 我们来证明 不存在. 此时问题会更复杂一些, 因为这时 是未知的, 有可能是无理数, 看上去无法使用类似的倍角公式转化问题, 事实上却不是如此.

仍用反证法处理, 若此时 , 则类似以上讨论, 我们有 , 从而 , 此意味着对充分大的 , 有 , 此表明 , 从而讨论又回到了类似于数列 的情况;

若 , 有 , 从而数列 收敛,

类似地仍可以证明 , 从而讨论又回到了类似于 的情况.

综上全部论述, 我们证明了




  

相关话题

  为何从一元五次方程开始就没有由有限次加、减、乘、除、开方运算构成的求根公式了? 
  有哪些有趣的矩阵? 
  为什么函数的连续点构成可测集? 
  数学必修四最后一课叫简单的三角恒等变换,就想问问是不是还有什么更难的三角函数? 
  什么是狄利克雷分布?狄利克雷过程又是什么? 
  请问扩展欧拉定理(扩展欧拉定理!不是欧拉定理!)有什么比较简洁易懂的证明方式吗? 
  如何理解数学证明中的容易验证? 
  怎么用特征根法和不动点法求数列的通项公式? 
  比0.000······1更小的非0数,是什么? 
  有哪些反直觉的数学现象? 

前一个讨论
有什么类似于石头门island和ever17之类剧情向的galgame?
下一个讨论
如何看待“二次元”优越感?





© 2024-11-09 - tinynew.org. All Rights Reserved.
© 2024-11-09 - tinynew.org. 保留所有权利