百科问答小站 logo
百科问答小站 font logo



如何证明不定方程是否有解? 第1页

  

user avatar   the-areas 网友的相关建议: 
      

直接硬算......

引理:如果整数 与奇数 满足 ,其中 互素,那么 ,其中 为互素整数。

证明: 是奇数,所以它的每个素因子 是奇数。 整除 ,所以多项式 在群 中有根;令 ,可得 ,所以 。群 有阶为6的元素,所以6整除群的大小 ,因此 。

下面用数学归纳法证明 的素数都能表示为 的形式。7显然可以;假设比 小的素数都可以,对 来说可以用上面的方法找一个整数 使得 ,其中 是整数。

如果 是偶数,那么 是奇数:如果 ,那么 ,否则 ,总之它们仍然是这个形式的。这样可以把 里的因子2都消掉,仍然保持 的形式。

剩下的 是奇数,其每个素因子 就是小于 的奇数。由证明开头的方法, ,由归纳假设 ,其中 是整数。设 ,其中 是整数,那么 。不妨设 ,那么 也保持上述形式。这样可以把 里的素因子都消掉,最后得到 也是 的形式。

这表示是唯一的(除了 的正负),因为假设 ,那么 。不妨设 ,那么 ,所以 。

这样 的每个素因子都有唯一的 的形式,所以 也有此形式,因为 。下面考虑 。假设 是素因子分解,并且 ,那么 。每个素因子都有唯一的表示;为了表示 ,我们从上面 项中每对共轭选一个;为了得到互素的表示,只能选 。这样, 就是从 按上面的公式产生的,也就是 。


假设三个非0整数 是 的绝对值总和最小的互素解。那么这三个数肯定是一个偶数,两个奇数。不妨设 是偶数。那么 ,否则 或者 ,所以 只有一个因数2,矛盾。这样 和 都是非0偶数,并且 一个是奇数,一个是偶数。所以 ,其中 是奇数,因此 是偶数, 是奇数。因为 互素, 也互素,所以 和 的最大公因数是1或者3。

如果最大公因数是1,那么 ,其中 是非0偶数, 是奇数。由引理, ,其中 互素,所以 。由 互素,可得 互素,所以 ,其中 为非0整数。而 ,这与 是此方程的绝对值总和最小的互素解矛盾。

如果最大公因数是3,那么 ,其中 是非0偶数,所以 。因为 互素, 也互素,所以 和 互素,因此 是奇数。这样 ,其中 是偶数, 是奇数,由引理, ,其中 互素, 是奇数, 是偶数。所以 。由 互素,可得 互素,所以 ,其中 为非0整数。而 ,这与 是此方程的绝对值总和最小的互素解矛盾。




  

相关话题

  为什么数学中“有且仅有”不可以说成“仅有”? 
  余数有哪些应用场合? 
  哪里找一些有难度的定积分题? 
  圆的面积 S 与半径的平方 R² 成正比,是从数学上的严格证明,还是一种数学直觉? 
  如何证明 1+1/4+1/9+1/16+1/25+…=π²/6? 
  如果一个圆的度数是361°世界会有什么影响? 
  费马大定理有初等证明吗?百度文库上有的是4页有的是2页,但看着不靠铺。 
  想买报纸,走了很久没有找到报亭,该换一条路还是走到底? 
  这是什么公式对不对? 
  为什么很多中国人认为刻苦钻研数学的人会成为科学家而刻苦钻研哲学的人则会发疯? 

前一个讨论
追二次元是什么体验?
下一个讨论
高考数学如何从140+到达150?





© 2025-04-16 - tinynew.org. All Rights Reserved.
© 2025-04-16 - tinynew.org. 保留所有权利